Modeling A ============== Characteristics of modeling ----------------------------------- The plate was cut into 200 TRIA3 meshes. Two models for the plate are used: DKT and DST. For the flexure problem, the boundary conditions are as follows: * in all knots on the edge: :math:`\mathit{DZ}\mathrm{=}0` For the membrane problem, the boundary conditions are: * in all the nodes of the mesh: :math:`\mathit{DZ}\mathrm{=}0` :math:`\mathit{DRX}\mathrm{=}\mathit{DRY}\mathrm{=}\mathit{DRZ}\mathrm{=}0`, * in all the nodes on sides :math:`\mathit{AB}` and :math:`\mathit{BC}`: :math:`\mathit{DY}\mathrm{=}0` * At points :math:`A,B,C,D`, discrete stiffness elements are added (direction :math:`x`). .. image:: images/10001A5E00001D8F0000110E1F11F87DCB2C3E07.svg :width: 381 :height: 220 .. _RefImage_10001A5E00001D8F0000110E1F11F87DCB2C3E07.svg: Characteristics of the mesh ---------------------------- Number of knots: 121 Number of meshes and types: 200 TRIA3 The characteristic points of the mesh are as follows: .. csv-table:: "Dot :math:`A` = :math:`\mathit{N1}` ", "Dot :math:`C` = :math:`\mathit{N121}`" "Dot :math:`B` = :math:`\mathit{N111}` ", "Dot :math:`D` = :math:`\mathit{N11}`" Tested sizes and results ------------------------------ For flexure modes: .. csv-table:: "**Number** **of the mode**", "", "", "", "**Frequencies**" "", "**Reference**", "**Aster** **** DKT **", "**% difference**", "**% tolerance**" "4", "35.63", "35.46", "—0.477", "0.5" "5", "68.51", "67.82", "—1.003", "1.1" "6", "109.62", "108.67", "—0.867", "0.9" "7", "123.32", "121.90", "—1.150", "1.2" "8", "142.51", "139.99", "—1.761", "1.8" "9", "197.32", "191.70", "—2.846", "2.9" .. csv-table:: "**Aster** **DST**", "**% difference**", "**% tolerance**" "35.45", "—0.492", "0.5" "67.80", "—1.030", "1.1" "108.62", "—0.910", "1." "121.84", "—1.199", "1.3" "139.92", "—1.815", "1.9" "191.57", "—2.912", "3." For the membrane problem: .. csv-table:: "**Reference**", "**Aster** **** DKT **", "**% difference**", "**% tolerance**" "0.14714", "0.147136", "—0.002", "0.1" "", "**Aster** **** DST **", "**% difference**", "**% tolerance**" "", "0.147136", "—0.001", "0.1" notes --------- For the flexure problem, the modal position of the first mode found in band :math:`(5.,200.)` is the fourth, because there are three solid body modes at the zero frequency: * translation modes :math:`u` and :math:`v` in the plane, * rotation mode around the :math:`z` axis.