Benchmark solution ===================== Calculation method used for the reference solution -------------------------------------------------------- The reference formula is the one given in sheet SDLS02 /89 of the guide VPCS, which presents the calculation method as follows: The formulation of M.V. BARTON, for a side plate a, led to: :math:`{f}_{i}=\frac{1}{2\pi {a}^{2}}{\lambda }_{i}^{2}\sqrt{\frac{E{t}^{2}}{12\rho (1-{\nu }^{2})}}` :math:`i=\mathrm{1,2},\mathrm{...}` where: :math:`{\lambda }_{i}^{2}=g(\alpha )` with, for a Poisson's ratio :math:`\nu =0.3` and :math:`\alpha =30°`: .. csv-table:: "", ":math:`\alpha =30°`" ":math:`{\lambda }_{1}^{2}` ", "3.961" ":math:`{\lambda }_{2}^{2}` ", "10.19" * M.V.Barton mentions the sensitivity of the result to the order of the mode and to angle :math:`\alpha`. * This reference solution applies to thin plates such as: :math:`t/a<0.1`. * The :math:`{\lambda }_{i}` coefficients were established with limited and insufficient development. Benchmark results ---------------------- The first two eigenmodes given by: * M.V.Barton's formula, * the average of 5 software packages for calculating by the finite element method. Uncertainty about the solution --------------------------- Semi-analytical solution :math:`\text{< 2\%}`. Bibliographical references --------------------------- 1. M.V. BARTON, Vibrations of rectangular and skew cantilever plates. Journal of Applied Mechanics, vol.18, p.129-134 (1951).