Benchmark solution ===================== Calculation method used for the reference solution -------------------------------------------------------- The reference solution is the one given in sheet SDLS01 /89 of the guide VPCS which presents the calculation method as follows: The formulation of M.V. BARTON, for a :math:`a` side plate, leads to: :math:`{f}_{i}=\frac{1}{2\pi {a}^{2}}{\lambda }_{i}^{2}\sqrt{\frac{{\mathrm{Et}}^{2}}{12\rho (1-{\nu }^{2})}}` :math:`i=\mathrm{1,2},\mathrm{...}` with, for a Poisson's ratio :math:`\nu =0.3`: .. csv-table:: "1°: Plate embedded on one side", "2°: Free plate" .. csv-table:: ":math:`i` "," :math:`{\lambda }_{i}^{2}` ", "", ":math:`i` "," :math:`{\lambda }_{i}^{2}`" "1", "3.492", "", "1 to 6", "0." "2", "8.525", "", "7", "13.49" "3", "21.43", "", "8", "19.79" "4", "27.33", "", "9", "24.43" "5", "31.11", "", "10", "35.02" "6", "54.44", "", "11", "35.02" (6 solid body modes at zero frequency). This reference solution applies to thin plates such as: :math:`t/a<0.1` The coefficients :math:`{\lambda }_{i}` are established by limited development on the modal deformations of a network of crossed beams (embedded beam—free and free—free). Benchmark results ---------------------- Case 1:6 first clean modes Case 2:11 first natural modes Uncertainty about the solution --------------------------- Semi—analytical solution. Bibliographical references --------------------------- 1. M.V. BARTON Vibrations of rectangular and skew cantilever plates. — Journal of Applied Mechanics, vol18, p.129—134 (1951)