Reference problem ===================== Geometry --------- .. image:: images/Object_1.svg :width: 339 :height: 148 .. _RefImage_Object_1.svg: Characteristics: .. csv-table:: "Pendulum length", ":math:`L=0.6m`" "Eccentricity", ":math:`a=0.1m`" "Profile height", ":math:`h=0.01m`" "Profile width", ":math:`b=0.004m`" "Section", ":math:`S=\mathrm{bh}`" "Flexural inertia", ":math:`{I}_{Z}={\mathrm{bh}}^{3}/12`" Material properties ------------------------ .. csv-table:: "Young's module", ":math:`E=7.E10N/{m}^{2}`" "Poisson's Ratio", ":math:`\nu =0.3`" "Density", ":math:`\rho =2700\mathrm{kg}/{m}^{3}`" Boundary conditions and loading ------------------------------------ The beam is hinged at point :math:`A`. The axis of the joint is axis :math:`Y`. The initial state of stress that makes it possible to calculate the geometric and centrifugal stiffness is obtained by imposing a speed of rotation and gravity. .. csv-table:: "Gravity acceleration", ":math:`g=-9.81m/{s}^{\mathrm{²}}` (parallel to the :math:`Z` axis)" "Rotation speed", ":math:`\Omega =10\mathrm{rad}/s`" The static equilibrium position :math:`{\theta }_{0}` corresponding to the load is calculated by the relationship: :math:`3g\mathrm{cos}{\theta }_{0}={\Omega }^{2}(\mathrm{3a}+\mathrm{2L}\mathrm{cos}{\theta }_{0})\mathrm{sin}{\theta }_{0}` We find :math:`{\theta }_{0}=11.269931365°` The conditions for travel to point :math:`A` are as follows: :math:`u=v=w=0`; :math:`{\phi }_{X}={\phi }_{Z}=0` It is also considered that the section through :math:`A` remains rigid. Initial conditions -------------------- Not applicable in modal analysis.