1. Reference problem#

1.1. Geometry#

It is a 40 meter high beam, whose lower part (between altitudes 0 and 10 meters) is composed of stiff material while the upper part (above the 10-meter mark) is more flexible; the whole is equipped with a spring at the lower end (Table 1.1-1).

_images/Shape1.gif

H

S

R O

Table 1.1-1 : Simplified Template

Point coordinates:

Knots

\(X\) (\(m\))

\(Y\) (\(m\))

\(Z\) (\(m\))

\(O\)

-1.

\(R\)

\(S\)

\(H\)

Table 1.1-2 : Node coordinates

Characteristics of the sections:

Outer radius \({R}_{\mathit{ext}}\) (\(m\))

Thickness \({E}_{p}\) (\(m\))

GROUP_MA

write off

RADIER

built

BATI

Table 1.1-3 : Section characteristics

1.2. Material properties#

Poisson’s ratio

Young’s modulus

\(({N\text{.}m}^{-2})\)) »

Density \(({\mathit{kg}\text{.}m}^{-3})\)

GROUP_MA

write off

0.2

\(3.5\text{ }E+10\)

\(2.5\text{ }E+03\)

RADIER

frame

0.2

\(3.5\text{ }E+08\)

\(2.5\text{ }E+03\)

BATI

Table 1.2-1

Stiffness in x \(({N\text{.}\mathit{kg}}^{-1})\)

Y-stiffness \(({N\text{.}\mathit{kg}}^{-1})\))

Stiffness in z \(({N\text{.}\mathit{kg}}^{-1})\))

Mass \((\mathit{kg})\)

GROUP_MA

soil

\(1\text{.}\text{ }E+13\)

\(1\text{.}\text{ }E+13\)

\(1\text{.}\text{ }E+13\)

SOL

Table 1.2-2 : Material Properties

1.3. Boundary conditions and loads#

Boundary conditions:

Knot \(O\): \(DX=DZ=0\)

Knot \(R\): \(DRY=0\)

All knots: \(DY=DRX=DRZ=0\)

Single-support seismic loads, identical in all 3 directions:

Reduced depreciation taken into account: 0.07

_images/10000200000003E9000002C0141C5FF130C587A8.png

Fig. 1.3-1: Elastic response spectrum

abscissa: frequency ( \(\mathit{Hz}\) )/ordinate: acceleration ( \(g\) )