Benchmark solution ===================== Calculation method used for the reference solution -------------------------------------------------------- The reference solution is the one presented in René-Jean's book GIBERT. By adopting the following notations: * next beam :math:`x` * :math:`y` and :math:`z` the flexure movements in planes :math:`\mathrm{xOz}` and :math:`\mathrm{xOy}` * :math:`S`: section of the beam * :math:`I`: flexural moment of inertia with respect to the :math:`y` and :math:`z` axes * :math:`{I}_{x}`: moment of inertia per unit length with respect to the :math:`\mathrm{Ox}` axis * :math:`\rho`, :math:`E` the characteristics of the material * :math:`\Omega` girder rotation speed Singular solutions are governed by the following system of equations: :math:`\mathrm{EI}\frac{{\partial }^{4}Y}{\partial {x}^{4}}-\rho S{\omega }^{2}Y+i\omega \Omega {I}_{x}\frac{{\partial }^{2}Z}{\partial {z}^{2}}=0` :math:`\mathrm{EI}\frac{{\partial }^{4}Z}{\partial {x}^{4}}-\rho S{\omega }^{2}Z-i\omega \Omega {I}_{x}\frac{{\partial }^{2}Y}{\partial {z}^{2}}=0` by complying with the following boundary conditions: :math:`\{\begin{array}{}Y=Z=0\\ \frac{{\partial }^{2}Y}{\partial {z}^{2}}=\frac{{\partial }^{2}Z}{\partial {z}^{2}}=0\end{array}` in :math:`\{\begin{array}{}x=0\\ x=L\end{array}` Two families of natural modes are obtained: 1. Retrograde mode: :math:`{Y}_{1}=-{\mathrm{i.Z}}_{1}=\mathrm{sin}\frac{n\pi x}{L}` with :math:`(\frac{{\omega }_{1}}{{\omega }_{0}})=\sqrt{{\lambda }^{2}+1}-\lambda` 2. Direct mode: :math:`{Y}_{2}=-{\mathrm{i.Z}}_{2}=\mathrm{sin}\frac{n\pi x}{L}` with :math:`(\frac{{\omega }_{2}}{{\omega }_{0}})=\sqrt{{\lambda }^{2}+1}+\lambda` by asking: natural pulsation without rotation: :math:`{\omega }_{0}={(\frac{n\pi }{L})}^{2}\sqrt{\frac{\mathrm{EI}}{\rho S}}` :math:`\lambda =\frac{1}{2}\mathrm{.}\frac{\Omega {I}_{x}}{\sqrt{\mathrm{EI}\rho S}}` with :math:`{I}_{x}=\frac{\rho S{D}^{2}}{8}` and :math:`I=\frac{\pi {D}^{4}}{64}` Benchmark results ---------------------- 4 first natural modes of flexure. Uncertainty about the solution --------------------------- Analytical solution with the Euler beam hypothesis. Bibliographical references --------------------------- René-Jean GIBERT, Vibrations of structures, No. 69 of the EDF R&D collection at EYROLLES, p. 235-237 (1988).