4. B modeling#

4.1. Characteristics of modeling#

It is a system of shafts rotating along the \(Z\) axis with negative rotation speeds. To obtain the same results as modeling A (with the minus sign), you must put a minus sign on the cross terms of the stiffness and damping matrices. The characteristics of the bearings are indicated in the following table.

Level

\(\mathrm{P1}\)

\({K}_{\mathrm{yy}}={8.10}^{7}N/m\)

\({K}_{\mathit{xx}}\mathrm{=}{1.10}^{8}N\mathrm{/}m\)

\({K}_{\mathit{yx}}\mathrm{=}{1.10}^{7}N\mathrm{/}m\)

\({K}_{\mathit{xy}}\mathrm{=}{6.10}^{7}N\mathrm{/}m\)

\({C}_{\mathrm{yy}}=8.{10}^{3}\mathrm{Ns}/m\)

\({C}_{\mathit{xx}}\mathrm{=}1.2{10}^{4}\mathit{Ns}\mathrm{/}m\)

\({C}_{\mathit{yx}}\mathrm{=}3.{10}^{3}\mathit{Ns}\mathrm{/}m\)

\({C}_{\mathit{xy}}\mathrm{=}{3.10}^{3}\mathit{Ns}\mathrm{/}m\)

Level

\(\mathrm{P2}\)

\({K}_{\mathrm{yy}}=5.{10}^{7}N/m\)

\({K}_{\mathit{xx}}\mathrm{=}7.{10}^{7}N\mathrm{/}m\)

\({K}_{\mathit{yx}}\mathrm{=}2.{10}^{6}N\mathrm{/}m\)

\({K}_{\mathit{xy}}\mathrm{=}4.{10}^{7}N\mathrm{/}m\)

\({C}_{\mathrm{yy}}=6.{10}^{3}\mathrm{Ns}/m\)

\({C}_{\mathit{xx}}\mathrm{=}8.{10}^{3}\mathit{Ns}\mathrm{/}m\)

\({C}_{\mathit{yx}}\mathrm{=}1.5{10}^{3}\mathit{Ns}\mathrm{/}m\)

\({C}_{\mathit{xy}}\mathrm{=}1.5{10}^{3}\mathit{Ns}\mathrm{/}m\)

Therefore, the precessions of the modes are also reversed, that is, the direct modes become retrograde and vice versa.

4.2. Characteristics of the mesh#

The rotor is meshed in 12 finite shaft elements of type POU_D_T and includes 4 discrete elements of type DIS_TR for modeling disks and bearings.

Number of knots: 13

Number and type of elements: 12 SEG2

4 POI1

_images/10000000000003B00000025688CF9E6548A77A18.png

Figure 1-b: Characteristic of the finite element model under ROTORINSA

4.3. Tested sizes and results#

4.3.1. Natural frequencies as a function of rotation speed#

The values of the first 8 bending frequencies for speeds \(0\mathrm{tr}/\mathrm{mn}\) and \(-60000\mathrm{tr}/\mathrm{mn}\), for both software programs, are shown in the table below.

Freq number in flexion

Rotation speed ( \(\mathrm{tr}/\mathrm{min}\) )

ROTORINSA

Aster_code

\(∣F∣(\mathrm{Hz})\)

Damping factor

Tolerances of \(∣F∣(\mathrm{Hz})\)

Damping tolerances reduced

A1

0

2.16212E+02

4.76544E-02

1.E-3

1.E-3

-60000

1.85365E+02

-5.17463E-02

1.E-3

1.1E-3

2

0

2.63539E+02

7.87281E-02

1.E-3

6.E-3

-60000

2.96078E+02

1.55245E-01

1.E-3

5.E-3

3

0

3.83210E+02

5.01438E-02

1.E-3

14.E-3

-60000

3.24718E+02

1.57489E-03

1.E-3

70.E-3

4

0

4.39642E+02

6.02275E-02

1.E-3

12.E-3

-60000

4.72541E+02

1.59683E-01

1.2E-3

3.E-3

Table 2-a: Flexion-type natural frequencies for Code_Aster and ROTORINSA

The frequencies obtained are in perfect harmony with those of ROTORINSA.

There is an instability of the first mode, which appears at \(-16760\mathrm{tr}/\mathrm{mn}\).

In Code_Aster, we also observe frequencies and modes of torsion and modes of traction/compression. These modes are not calculated by ROTORINSA, as it only models bending behavior. The values of these frequencies are tested in NON_REGRESSION and only when stopped. In fact, the modes of twisting and pulling are, by definition, invariant with respect to the speed of rotation.