Modeling A ============== Characteristics of modeling A ------------------------------------- Models POU_D_E and DIS_TR Number of knots: 19 Number of stitches: 19 i.e. 18 SEG2 and 1 POI1 Node group: :math:`\mathrm{PALIER}\text{\_}A` :math:`\mathrm{PALIER}\text{\_}B` Tested sizes and results ------------------------------ * **First modal calculation: it is of type GEP** **.We solve it*via* the operator CALC_MODES + SOLVEUR_MODAL =_F (METHODE =' SORENSEN ') (concept MODES). .. csv-table:: ":math:`N°` "," :math:`\mathrm{FREQ}(\mathrm{Hz})` displayed in the .mess", "Tolerance" "2", "124.231", "10-6" "3", "124.231", "10-6" "4", "498.302", "10-6" "5", "498.302", "10-6" "6", "1118.15", "10-6" "7", "1118.15", "10-6" "8", "1993.47", "10-6" "9", "1993.47", "10-6" "10", "2021.39", "10-6" "11", "2850.72", "10-6" * We are also testing the INFO_MODE command. Since GEP is standard (real symmetric matrices) its eigenvalues belong only to the real axis. In this case, we can therefore compare the two counting methods (COMPTAGE/METHODE =' STURM 'and' APM ') and check that they actually give the same results. We thus determine the number of eigenvalues (NB_FREQ) contained strictly in a frequency band [FREQ_MIN, FREQ_MAX] (if Sturm) or in the disk with center FREQ_CENTRE and radius, in frequency, :math:`\frac{\sqrt{\text{RAYON\_CONTOUR}}}{2\pi }` (if APM). We specify the counting method used (Sturm or APM). .. csv-table:: "Concept", "FREQ_MIN/ CENTRE_CONTOUR "," FREQ_MAX/ RAYON_CONTOUR "," NB_FREQ ", "Counting method" "NBMOD01 ", "-1.0", "120.0", "1 We count :math:`{\lambda }_{1}`. ", "Sturm" "NBMOD02 ", "-1.0", "130.0", "3 We count :math:`{({\lambda }_{i})}_{\text{i=1,3}}`. ", "Sturm" "NBMOD03 ", "-1.0", "1200.0", "7 We count :math:`{({\lambda }_{i})}_{\text{i=1,7}}`. ", "Sturm" "NBMOD11 ", "0.0+0.0j", "5.684 105" (= :math:`{(\mathrm{120x2}\pi )}^{2}`)", "1 Same NBMOD01 "," APM" "NBMOD12 ", "0.0+0.0j", "6.671 105" (= :math:`{(\mathrm{130x2}\pi )}^{2}`)", "3 Same NBMOD02 "," APM" "NBMOD13 ", "0.0+0.0j", "5.684 107" (= :math:`{(\mathrm{1200x2}\pi )}^{2}`)", "7 Same NBMOD03 "," APM" * **Second modal calculation:** it is of type QEP *\*.**It is solved*via* using the CALC_MODES + SOLVEUR_MODAL =_F (METHODE ='QZ') operator (='QZ') (concept MODEQ). .. csv-table:: ":math:`N°` [1] _", ":math:`\mathrm{FREQ}(\mathrm{Hz})` displayed in .mess (= :math:`\frac{\mathrm{\Im }({\lambda }_{i})}{2\pi }`)", ":math:`\mathit{AMORTISSEMENT}` displayed in .mess (= :math:`\frac{\mathrm{-}\mathrm{\Re }({\lambda }_{i})}{\mathrm{\mid }{\lambda }_{i}\mathrm{\mid }}`)", "Eigenvalue module (= :math:`\mathrm{\mid }{\lambda }_{i}\mathrm{\mid }`)", "Tolerance" "Not applicable", "Not included in *Code_Aster* because true eigenvalue", "Not applicable", "0", "Not applicable" "Not applicable", "Not included in *Code_Aster* because true eigenvalue", "Not applicable", "0", "Not applicable" "1", "123.915 + the conjugate complex", "10-11", "778.5", "0.5" "2", "124.546 + the conjugate complex", "10-09", "782.5", "0.5" " ... "," ... "," ... "," ... ", "..." "10", "2850.72 + the conjugate complex", "10-15", "18849.5", "0.5" "11", "3099.17 + the conjugate complex", "10-11", "19472.6", "0.5" " ... "," ... "," ... "," ... ", "..." "41", "21273.2 + the conjugate complex", "10-12", "133663.4", "0.5" "42", "21380.2 + the conjugate complex", "10-12", "134335.7", "0.5" " ... "," ... "," ... "," ... ", "..." * We are also testing the INFO_MODE command. Since it is a QEP with real matrices, its eigenvalues are either real or complex conjugate. So we can only use the APM method here. It determines the number of eigenvalues (NB_FREQ) contained here strictly in the disk with center CENTRE_CONTOUR and radius RAYON_CONTOUR. .. csv-table:: "Concept", "CENTRE_CONTOUR "," RAYON_CONTOUR "," "," NB_FREQ ", "Enumeration method" "NBMOD04 ", "0.0+0.0j", "779.114 (= :math:`\mathrm{124x2}\pi`)", "4 We count the 2 zero values + the :math:`({\lambda }_{\mathrm{1,}}\stackrel{ˉ}{{\lambda }_{1}})` couple. "," APM" "NBMOD05 ", "0.0+779.114j (= :math:`0.0+\mathrm{124x2}\pi j`)", "7", "2 We count the 2 values :math:`{\lambda }_{1}` and :math:`{\lambda }_{2}` without their conjugate. "," APM" "NBMOD06 ", "0.0+0.0j", "1.884 104" (= :math:`\mathrm{3000x2}\pi`)", "22 We count the 2 zero values + the :math:`{({\lambda }_{i},\stackrel{ˉ}{{\lambda }_{i}})}_{\text{i=1,10}}` couples. "," APM" "NBMOD07 ", "0.0+0.0j", "1.338 105" (= :math:`\mathrm{21300x2}\pi`)", "84 We count the 2 zero values + the :math:`{({\lambda }_{i},\stackrel{ˉ}{{\lambda }_{i}})}_{\text{i=1,41}}` couples. "," APM" "NBMOD08 ", "779.114 (1.0+j) (= :math:`\mathrm{124x2}\pi (1.0+j)`)", "701.203 (= :math:`\mathrm{0.9x}\mathrm{124x2}\pi`)", "0"," APM" .. [1] Only the order in the Code_Aster data structure, since there is no order relationship in the complex plane.