Benchmark solution ===================== Calculation method used for the reference solution -------------------------------------------------------- The vibration equation for a prestressed beam is: :math:`{\mathrm{EI}}_{z}\frac{{\partial }^{4}y}{\partial {x}^{4}}+P\frac{{\partial }^{2}y}{\partial {x}^{2}}=-\rho S\frac{{\partial }^{2}y}{\partial {x}^{2}}` tensile prestress if :math:`P>0`, compression if :math:`P<0`, and leads to the natural frequencies of bending (Euler-Bernoulli hypothesis) :math:`{f}_{i}\mathrm{=}\frac{{i}^{2}\pi }{2{L}^{2}}{(1+\frac{{\mathit{PL}}^{2}}{{\mathit{EI}}_{z}{i}^{2}{\pi }^{2}})}^{1\mathrm{/}2}{(\frac{{\mathit{EI}}_{z}}{\rho S})}^{1\mathrm{/}2}`, :math:`i=\mathrm{1,2}\mathrm{,3},\mathrm{...}` Benchmark results ---------------------- 5 first natural frequencies. Uncertainty about the solution --------------------------- Analytical solution (hypothesis of Euler-Bernouilli beams). Bibliographical references --------------------------- 1. Robert D. BLEVINS Formulas for natural frequency and mode shape - 1979 p.144 (corrected formula 8.20).