2. Benchmark solution#

2.1. Calculation method used for the reference solution#

The reference solution is the one given in sheet SDLL09 /89 of the guide VPCS which presents the calculation method as follows:

Exact calculation by numerical integration of the differential equation of the bending of beams (Euler-Bernouilli theory).

\(\frac{{\mathrm{\partial }}^{2}({\mathit{EI}}_{z}\frac{{\mathrm{\partial }}^{2}v}{\mathrm{\partial }{x}^{2}})}{\mathrm{\partial }{x}^{2}}\mathrm{=}\mathrm{-}\rho A\frac{{\mathrm{\partial }}^{2}v}{\mathrm{\partial }{t}^{2}}\)

where \({I}_{z}\) and \(A\) vary with the abscissa.

We get:

\({f}_{i}\mathrm{=}\frac{1}{2\pi }{\lambda }_{i}(\alpha ,\beta )\frac{{h}_{1}}{{L}^{2}}\sqrt{\frac{E}{12\rho }}\)

with:

\(\begin{array}{c}\alpha \mathrm{=}\frac{{h}_{0}}{{h}_{1}}\mathrm{=}4\\ \beta \mathrm{=}\frac{{b}_{0}}{{b}_{1}}\mathrm{=}4\mathit{ou}5\end{array}\)

\({\lambda }_{1}\)

\({\lambda }_{2}\)

\({\lambda }_{3}\)

\({\lambda }_{4}\)

\({\lambda }_{5}\)

\(\beta \mathrm{=}4\)

23.289

73.9

73.9

165.23

299.7

478.1

\(\beta \mathrm{=}5\)

24.308

75.56

75.56

167.21

301.9

480.4

2.2. Benchmark results#

5 first natural modes of flexure.

2.3. Uncertainty about the solution#

Semi-analytical solution.

2.4. Bibliographical references#

H.H. MABIE, C.B. ROGERS, Transverse vibrations of double-tapered cantilever beams- Journal of the Acoustical Society of America, No. 51, p.1771-1774 (1972).