Reference solution ===================== Calculation method used for the reference solution -------------------------------------------------------- The reference solution is the one given in sheet SDLL08 /89 of the guide VPCS, which presents the calculation method as follows: A Rayleigh-Ritz method makes it possible to perform the calculation with two degrees of freedom based on the following symmetric deformation hypotheses: * for the abscissa point :math:`y` of the side members :math:`\mathrm{AC}` and :math:`\mathrm{DF}` of length :math:`\mathrm{L1}` .. image:: images/Object_4.svg :width: 162 :height: 58 .. _RefImage_Object_4.svg: * for the abscissa point :math:`x` of the crosspiece :math:`\mathrm{BE}` of length :math:`\mathrm{L2}` .. image:: images/Object_5.svg :width: 162 :height: 58 .. _RefImage_Object_5.svg: .. image:: images/10002B82000022EF00001089B38A4BC80FC21EA6.svg :width: 162 :height: 58 .. _RefImage_10002B82000022EF00001089B38A4BC80FC21EA6.svg: Benchmark results ---------------------- The first two natural frequencies and **symmetric** natural modes (the other natural frequencies of this system are not studied). For the natural modes, we have the following value: .. image:: images/Object_6.svg :width: 162 :height: 58 .. _RefImage_Object_6.svg: In harmonic response we have: * .. image: images/Object_7.svg :width: 162 :height: 58 .. _RefImage_Object_7.svg: , * .. image: images/Object_8.svg :width: 162 :height: 58 .. _RefImage_Object_8.svg: at point :math:`G`. Uncertainty about the solution --------------------------- Analytical solution. Bibliographical references --------------------------- 1. J.M. BIGGS. Introduction to Structural Dynamics. New York: McGraw Hill, p.184 (1964).