1. Reference problem#

1.1. Loading#

Initially, the load was modelled by a time history of a uniform load q1 = 10,000 N/m (as below).

_images/1000020100000184000000969C3BC3C06EE98DC2.png

Figure 1.1-1

In code-aster, this is therefore converted into nodal loads, shown below.

_images/1000000000000FA0000008CAA3FFA98E39A5EA7C.png

Figure 1.1-2

The magnitude of the nodal forces varies as a function of time as shown in Figure 1.1-1 with q1 = 1, t1 = 2.38e-2 (s) and t2 = 5.95e-2 (s).

1.2. Liaisons#

  • Embedding PT_5 (DX=DY=DZ= DRX = = DRY = DRZ =0)

  • Embedding PT_32 (DX=DY=DZ= DRX = = DRY = DRZ =0)

1.3. Geometry#

  • Beam PT_5 to PT_12 and PT_23 to PT_32

Characteristics

Value

Unit

Inertia

19.43*106

mm4

Area

2 872

mm²

Table 1.3-1

  • Beam PT_12 to PT_23

Characteristics

Value

Unit

Inertia

83.56*106

mm4

Area

5 356

mm²

Table 1.3-2

1.4. Material properties#

  • Beam PT_5 to PT_12 and PT_23 to PT_32

Characteristics

Value

Unit

Young’s module

200,000

MPa

Poisson’s ratio

0.30

[-]

Density

7,800

kg/m3

Table 1.4-1

  • Beam PT_12 to PT_23

Characteristics

Value

Unit

Young’s module

200,000

MPa

Poisson’s ratio

0.30

[-]

Density

7,916

kg/m3

Table 1.4-2

1.5. Bibliographical references#

  1. VPCS: Guide to the validation of structural calculation software packages: « test SDLL03 -89 », SFM, AFNOR technique.