Reference problem ===================== Geometry --------- The system is composed of a mass, a spring and a shock absorber. It admits a single degree of freedom in translation. .. image:: images/Object_1.svg :width: 560 :height: 240 .. _RefImage_Object_1.svg: Material properties ----------------------- Link stiffness: :math:`k\mathrm{=}{25.10}^{3}{\mathit{N.m}}^{\mathrm{-}1}` Point mass: :math:`m\mathrm{=}10\mathit{kg}` Viscous damping: :math:`c\mathrm{=}{c}_{\mathit{critique}}`; :math:`c\mathrm{=}\mathrm{0,01}{c}_{\mathit{critique}}`; :math:`c\mathrm{=}{10}^{\mathrm{-}5}{c}_{\mathit{critique}}` with :math:`{c}_{\mathit{critique}}\mathrm{=}1000{\mathit{kg.s}}^{\mathrm{-}1}` Boundary conditions and loads ------------------------------------- Recessed A end Harmonic force following x at the resonance frequency at point :math:`B`: :math:`F(t)\mathrm{=}{F}_{0}\mathrm{sin}(\omega t)` for :math:`t\mathrm{\ge }0` with :math:`{F}_{0}\mathrm{=}5N` and :math:`\omega \mathrm{=}\sqrt{\frac{k}{m}}\mathrm{=}50{\mathit{rad.s}}^{\mathrm{-}1}`. Initial conditions -------------------- The system is at rest at :math:`t=0`: :math:`u(0)=0` and :math:`\frac{\mathit{du}}{\mathit{dt}}(0)\mathrm{=}0`.