Reference problem ===================== Geometry --------- We consider the system represented by the diagram below: .. image:: images/100000000000028000000180A97838A70A6D00BD.png :width: 4.5256in :height: 2.6075in .. _RefImage_100000000000028000000180A97838A70A6D00BD.png: .. csv-table:: "Point masses:", ":math:`{m}_{1}` and :math:`{m}_{2}`" "Link stiffness:", ":math:`{k}_{1}` and :math:`{k}_{2}`" "Hysteretic damping:", ":math:`{\eta }_{1}` and :math:`{\eta }_{2}`" Material properties ---------------------- .. csv-table:: "Linear elastic translation spring", ":math:`{K}_{1}\mathrm{=}28000N\mathrm{/}m`" "", ":math:`{K}_{2}\mathrm{=}28000N\mathrm{/}m`" "Point mass", ":math:`{M}_{1}\mathrm{=}10\mathit{kg}`" "", ":math:`{M}_{2}\mathrm{=}5\mathit{kg}`" "Hysteretic damping", ":math:`{\eta }_{1}\mathrm{=}0.1`" "", ":math:`{\eta }_{2}\mathrm{=}0.0`" Boundary conditions and loads ------------------------------------- Boundary conditions: Points :math:`A`, :math:`B`, :math:`C` embedded in :math:`\mathit{DY}` and :math:`\mathit{DZ}` Points :math:`A`: recessed :math:`(\mathit{DX}\mathrm{=}0)`. Loading: Sinusoidal concentrated force with variable frequency at point :math:`C` :math:`\begin{array}{c}{F}_{{x}_{4}}\mathrm{=}{F}_{0}\mathrm{sin}\Omega t\\ \Omega \mathrm{=}2\pi f0\mathit{Hz}\mathrm{\le }f\mathrm{\le }21.0543\mathit{Hz}\\ {F}_{0}\mathrm{=}\mathit{constante}\mathrm{=}\mathrm{100N}\end{array}` Initial conditions -------------------- Not applicable to the study of the permanent harmonic regime.