Reference solution ===================== Calculation method used for the reference solution -------------------------------------------------------- The reference solution is the one given in sheet SDLD27 of guide VPCS. The problem leads to the search for the eigenvalues and eigenvectors of the following dissipative system: :math:`M\ddot{u}+C\dot{u}+Ku\mathrm{=}0` with :math:`M` mass matrix, :math:`C` damping matrix, :math:`K` stiffness matrix. This dissipative problem is associated with the conservative problem: :math:`Ku+M\ddot{u}\mathrm{=}0`. In harmonic form, it is written :math:`K\mathrm{-}{\omega }^{2}M\mathrm{=}0`. Let :math:`\Lambda \mathrm{=}\mathrm{[}{\omega }_{v}^{2}\mathrm{]}` be the spectral diagonal matrix of the eigenvalues of this conservative system and :math:`\phi \mathrm{=}\mathrm{[}{\varphi }_{v}\mathrm{]}` the corresponding matrix of eigenvectors. The :math:`{\varphi }_{v}` are standardized such as: :math:`{\phi }^{T}M\phi \mathrm{=}\mathit{Id}` :math:`{\phi }^{T}K\phi \mathrm{=}\Lambda`. The solutions of the dissipative system are of the form: :math:`u\mathrm{=}{u}_{0}{e}^{\mathit{st}}` from where :math:`(M{s}^{2}+Cs+K){u}_{0}\mathrm{=}0`. We break down :math:`{u}_{0}` in the base of :math:`{\varphi }_{v}`. We then have :math:`{u}_{0}\mathrm{=}\phi q`, from where: :math:`(I{s}^{2}+\gamma s+\Lambda )q\mathrm{=}0` with :math:`\gamma \mathrm{=}{\phi }^{T}C\phi` (full matrix) This eigenvalue problem is solved by an inverse power method using :math:`{s}_{v}\mathrm{=}j{\omega }_{v}` as an initial estimate. Benchmark results ---------------------- The 8 damping and frequencies specific to the system, as well as the 1st and 8th modes (complex). Uncertainty about the solution --------------------------- Semi-analytical solution. Bibliographical references --------------------------- * J. PIRANDA - User manual for the modal analysis software MODAN - Version 0.2 (1990) Laboratory of Applied Mechanics - University of Franche‑Comté - Besançon (France) * Guide VPCS. Dynamic Group Supplement. September 94