Benchmark solution ===================== Calculation method used for the reference solution -------------------------------------------------------- The system of coupled second-order differential equations is of the form: :math:`M\ddot{u}+C\dot{u}+Ku=F` with :math:`M=\left[\begin{array}{ccccc}10& & & & \\ & 10& & & \\ & & \mathrm{.}& & \\ & & & & 10\end{array}\right]` :math:`C=50\left[\begin{array}{cccccc}2& -1& & & & \\ -1& 2& -1& & & \\ & -1& 2& \mathrm{.}& & \\ & & \mathrm{.}& \mathrm{.}& \mathrm{.}& \\ & & & \mathrm{.}& \mathrm{.}& -1\\ & & & & -1& 2\end{array}\right]` :math:`K={10}^{+5}\left[\begin{array}{cccccc}2& -1& & & & \\ -1& 2& -1& & & \\ & -1& 2& \mathrm{.}& & \\ & & \mathrm{.}& \mathrm{.}& \mathrm{.}& \\ & & & \mathrm{.}& \mathrm{.}& -1\\ & & & & -1& 2\end{array}\right]` The :math:`\omega` solution to :math:`F={F}_{0}{e}^{j\omega t}({j}^{2}=-1)` harmonic excitation is of the form :math:`u={u}_{0}{e}^{j\omega t}`, which leads to: :math:`(K-M{\omega }^{2}+j\omega C){u}_{0}={F}_{0}` This system can be solved for any :math:`\omega`, either directly or by using the modal transformation from the real eigenmodes obtained by the associated conservative system :math:`(K-M{\omega }^{2})\phi =0`. It admits :math:`n` eigensolutions (8 in this case) :math:`{\omega }_{i}^{2}` and associated vectors :math:`{\phi }_{i}` grouped together in the spectral matrix :math:`\Lambda =[{\omega }_{i}^{2}]` and the modal matrix :math:`\Phi =[{\phi }_{i}]`. The modal transformation consists in writing: .. image:: images/Object_13.svg :width: 61 :height: 19 .. _RefImage_Object_13.svg: which leads to: :math:`\left[\Lambda -{\omega }^{2}I+j\omega \xi \right]q={}^{t}\Phi {F}_{0}` :math:`I` is identity, here :math:`\xi` is diagonal :math:`\xi =\left[{\xi }_{\mathrm{ii}}\right]` because the damping is proportional :math:`(C=\alpha K)`. The answer is written as: :math:`{u}_{0}=\underset{i=1}{\overset{n}{\Sigma }}\frac{{\phi }_{i}^{t}{\phi }_{i}}{{\omega }_{i}^{2}-{\omega }^{2}+j\omega {\xi }_{\mathrm{ii}}}{F}_{0}` The exact solution is obtained by taking all the proper modes. We deduce: :math:`\dot{{u}_{0}}=j\omega {u}_{0}` and :math:`\ddot{{u}_{0}}=-{\omega }^{2}{u}_{0}` Benchmark results ---------------------- Displacement along :math:`x` of point :math:`{P}_{4}` for some frequencies. Uncertainty about the solution --------------------------- Semi-analytical solution. Bibliographical reference ------------------------- 1. J. PIRANDA: Instructions for using the modal analysis software MODAN - Version 0.2 (1990). Laboratory of Applied Mechanics - University of Franche Comté - Besançon (France).