Benchmark solution ===================== Calculation method used for the reference solution -------------------------------------------------------- The reference solution is the one given in sheet SDLD02 /89 of the guide VPCS, which presents the calculation method as follows: The problem leads to the search for the eigenvalues and eigenvectors of: :math:`(K\mathrm{-}M{\omega }_{i}){\Phi }_{i}\mathrm{=}0` :math:`K\mathrm{=}\left[\begin{array}{cccccc}k& \mathrm{-}k& & & & \\ \mathrm{-}k& \mathrm{2k}& \mathrm{-}k& & & \\ & & \mathrm{..}& & & \\ & & & \mathrm{-}k& \mathrm{2k}& \mathrm{-}k\\ & & & & \mathrm{-}k& k\end{array}\right]` :math:`M\mathrm{=}\left[\begin{array}{ccccc}0& & & & \\ & m& & & \\ & & \mathrm{..}& & \\ & & & m& \\ & & & & 0\end{array}\right]` from where: :math:`{f}_{i}\mathrm{=}\frac{1}{\pi }\sqrt{\frac{k}{m}}\mathrm{cos}(\frac{n+1\mathrm{-}i}{(n+1)}\frac{\pi }{2})` :math:`i\mathrm{=}\mathrm{1,}\mathrm{2,}\mathrm{...},n` :math:`n` = number of masses :math:`{\Phi }_{i}^{t}` calculated by solving the linear system. Benchmark results ---------------------- 8 first natural frequencies and the first and eighth normalized eigenvectors such as: Test VPCS provides modes that are standardized to :math:`{\Phi }^{t}M\Phi \mathrm{=}10`. Standard modes are presented: * at the generalized unit mass: :math:`{\Phi }^{t}M\Phi \mathrm{=}1`; the reference components are divided by :math:`\sqrt{10}`, * to the generalized stiffness, which is the same as dividing the previous components by .. image:: images/Object_10.svg :width: 18 :height: 22 .. _RefImage_Object_10.svg: , * to the largest travel component. Uncertainty about the solution --------------------------- Analytical solution. Bibliographical references --------------------------- 1. M. LALANNE, P. BERTHIER, J. DERHAGOPIAN. Mechanics of linear vibrations. Paris: MASSON, 2nd edition, chapter 3, p. 100-101 (1986)