3. Modeling A#

3.1. Characteristics of modeling#

Discrete translational stiffness element DIS_T

_images/10000000000002A0000000DE179A8A60910DB795.png

Characteristics of the elements:

ORIENTATION:

in all the nodes

with an angle \(\alpha \mathrm{=}53.130102°\)

DISCRET:

with nodal masses all nodes

M_T_D_N

in absolute coordinate system

\((m\mathrm{=}10.)\)

all-mesh stiffness matrices

K_T_D_L

in local coordinate system

\((\mathit{Kx}\mathrm{=}1.{10}^{5})\)

at the end nodes

K_T_D_N

in local coordinate system

\(({K}_{x}\mathrm{=}1.{10}^{5})\)

Boundary conditions:

DDL_IMPO: (TOUT: “OUI” DZ: 0.)

LIAISON_DDL: (such as \(\mathrm{3Dy}\mathrm{=}\mathrm{4Dx}\) in all nodes)

Node names: \({P}_{\mathrm{1,}}{P}_{\mathrm{2,}}\mathrm{....},{P}_{8}\)

\[\]

: label: EQ-None

mathit {Point} Amathrm {=}mathit {N1}

3.2. Characteristics of the mesh#

Number of knots: 8

Number of meshes and types: 7 SEG2

3.3. Tested sizes and results#

Identification Clean mode number

Reference

1

5.5274

2

10.8868

3

15.9155

4

20.4606

5

24.3840

6

27.5664

7

29.9113

8

31.3474

Standardized mode with 1 to the largest component

Nature of clean modes

Point

Reference

Translation 1 (\(\mathit{Dy}\)) \({\Phi }_{1}\)

P1 P2 P3 P4 P5 P6 P7 P8

—0.3473 —0.6527 —0.8793 —1. —1. —0.8793 —0.6527 —0.3473

Translation 8 (\(\mathit{Dy}\)) \({\Phi }_{8}\)

P1 P2 P3 P4 P5 P6 P7 P8

0.3473 —0.6527 0.8793 —1. 1. —0.8793 0.6527 —0.3473

Maximum error less than: 0.03%.

Mode standardized to the generalized unit mass

Nature of clean modes

Point

Reference

Translation 1 (\(\mathit{Dy}\)) \({\Phi }_{1}\)

P1 P2 P3 P4 P5 P6 P7 P8

—4.0781E—2 —7.6654E—2 —1.0327E—1 —1.1743E—1 —1.1743E—1 —1.0327E—1 —7.6654E—2 —4.0781E—2

Translation 8 (\(\mathit{Dy}\)) \({\Phi }_{8}\)

P1 P2 P3 P4 P5 P6 P7 P8

4.0781E—2 —7.6654E—2 1.0327E—1 —1.1743E—1 1.1743E—1 —1.0327E—1 7.6654E—2 —4.0781E—2

Maximum error less than: 0.03%.

Standardized mode with unitary generalized stiffness

Nature of clean modes

Point

Reference

Translation 1 (\(\mathit{Dy}\)) \({\Phi }_{1}\)

P1 P2 P3 P4 P5 P6 P7 P8

—1.1742E—3 —2.2072E—3 —2.9735E—3 —3.3813E—3 —3.3813E—3 —2.9735E—3 —2.2072E—3 —1.1742E—3

Translation 8 (\(\mathit{Dy}\)) \({\Phi }_{8}\)

P1 P2 P3 P4 P5 P6 P7 P8

2.0705E—4 —3.8918E—4 5.2432E—4 —5.9621E—4 5.9621E—4 —5.2432E—4 3.8918E—4 —2.0705E—4

Maximum error less than: 0.03%.

We are also testing the INFO_MODE command. Since GEP is standard (real symmetric matrices) its eigenvalues belong only to the real axis. In this case, we can therefore compare the two counting methods (COMPTAGE/METHODE =” STURM “and” APM “) and check that they actually give the same results.

We thus determine the number of eigenvalues (NB_FREQ) contained strictly in a frequency band [FREQ_MIN, FREQ_MAX] (if Sturm) or in the disk with center FREQ_CENTRE and radius, in frequency, \(\frac{\sqrt{\text{FREQ\_RAYON\_CONTOUR}}}{2\pi }\) (if APM). We specify the counting method used (Sturm or APM).

Concept

FREQ_MIN/ FREQ_CENTRE

FREQ_MAX/

FREQ_RAYON_ CONTOUR

NB_FREQ

Counting method

NBMOD01

0.0

5

5

0

Sturm

NBMOD02

0.0

21

4 We count \({({\lambda }_{i})}_{\text{i=1,4}}\)

Sturm

NBMOD03

0.0

32

8 We count \({({\lambda }_{i})}_{\text{i=1,8}}\)

Sturm

NBMOD11

0.0+0.0j

986.96 (= \({(5\mathrm{\times }2\pi )}^{2}\))

0 Same NBMOD01

APM

NBMOD12

0.0+0.0j

1740.99 (= \({(21\mathrm{\times }2\pi )}^{2}\))

4 Same NBMOD02

APM

NBMOD13

0.0+0.0j

4042.58

(= \({(32\mathrm{\times }2\pi )}^{2}\)) »

8 Same NBMOD03

APM

NBMOD4

\(10000.0+\mathrm{0.0j}\)

(= \({(\mathrm{15.91x2}\pi )}^{2}\))

5000.0

1 We count \({\lambda }_{1}\)

APM

NBMOD5

\(1000.0(10.0+j)\)

900.0

0

APM

3.4. notes#

Calculations made by:

CALC_MODES

OPTION =' AJUSTE ',

CALC_FREQ =_F (FREQ =( 5., 10., 10., 15., 15., 15., 15., 15., 20., 24., 24., 27., 30., 32.)), SOLVEUR_MODAL =_F (OPTION_INV =” DIRECT “)

Contents of the results file:

8 first natural frequencies, eigenvectors and modal parameters