3. C modeling#

3.1. Characteristics of modeling#

  • Tested behavior: gursonTvergaardNeedlemanplasticflow_numericaljacobian.mfront

Elasto-plastic law with Gurson damage (model GTN in the literature).

Ref: « Analysis of the cup cone fracture in a round tensile bar ».

V.Tvergaard, A.Needleman, Acat Metallurgica 32 (1984) 157-169

the criterion is of the shape (f is the porosity)

\(F(\sigma ,f)={(\frac{{\sigma }_{\mathit{eq}}}{{\sigma }_{0}})}^{2}+2{q}_{1}f\mathrm{cosh}(\frac{3}{2}{q}_{2}\frac{{\sigma }_{h}}{{\sigma }_{0}})-1-{({q}_{1}f)}^{2}\le 0\)

Isotope work hardening is modified as follows (

\(R(p)=\mathit{R0}+{Q}_{1}(1–{e}^{-{b}_{1}p})+{Q}_{2}(1–{e}^{-{b}_{2}p})\)

  • Modeling: material point subject to imposed deformations:

\({\epsilon }_{\mathit{xx}}=\mathrm{0,02}t\), \({\epsilon }_{\mathit{yy}}=\mathrm{0,1}t\) \({\epsilon }_{\mathit{zz}}=0\)

  • Material properties:

Young

200000

Fish

0.3

R0

500

Q1

1e9

b1

1-e-6

Q2

0

b2

0

f0

1-e-3

fc

1-e-2

delta

2

beta

0

Cp

app

1 e-5

q1

1.5

q2

1

3.2. Tested sizes and results#

Response curve \({\sigma }_{\mathit{yy}}=f({\epsilon }_{\mathit{yy}})\) is:

_images/10000000000007F100000823845EFB046544CF42.png

The tests are non-regression.

Identification

Instants

Reference

Tolerance

\({\sigma }_{\mathit{xx}}\)

0.3

910.12

0.1%

\({\sigma }_{\mathit{yy}}\)

0.3

1069.37

0.1%

\({\sigma }_{\mathit{zz}}\)

0.3

870.308

0.1%