1. Reference problem#
1.1. Geometry#
Material point.
1.2. Properties of monocrystalline materials for modeling A#
Elastic behavior with: |
Young’s module: |
Poisson’s ratio: |
|
Behavior mono-crystalline, with BCC24 sliding system.
Type of flow: MONO_VISC1 whose parameters are:
\(n=12\), \(K=15\mathit{MPa}\)
Isotropic work hardening type: MONO_ISOT1 ** whose parameters are:
\(\text{H1}=0.1,\text{H2}=0.7,\text{H3=H4}=0.1\) (interaction between sliding systems)
No kinematic work hardening: \(C=d=0\)
1.3. Properties of monocrystalline materials for B modeling#
Young’s module: \(E=(236-\mathrm{0,0459}T)\text{GPa}\) Poisson’s Ratio \(\nu =0.35\) |
\(\text{TEMP}=183K\) \(\text{D\_LAT}=\mathrm{0,01}\) \(\text{K\_BOLTZ}=8.62{10}^{\text{-5}}\) \(\text{GAMMA0}={10}^{\text{-6}}{s}^{\text{-1}}\) \(\text{TAU\_0}=363\text{MPa}\) \(\text{TAU\_F}=0\) \(\text{RHO\_MOB}={10}^{\text{6}}{\text{mm}}^{\text{-2}}\) \(\text{K\_F}=75\text{K\_SELF}=100\) \(\text{B}=2.48{10}^{\text{-7}}\text{mm}\) \(\text{N}=50\) \(\text{DELTAG0}=0.84\) \(\text{D}={10}^{\text{-5}}\text{mm}\) \(\text{GH}={10}^{\text{11}}\), \(\text{Y\_AT}=2{10}^{\text{-6}}\text{mm}\) \(\text{RHO\_IRRA}=1.e8\), \(\text{a\_irr}=\mathrm{0,1}\) The internal variables representing the dislocation density are initialized to \({\rho }_{0}={\mathrm{13,10}}^{\text{6}}{\mathit{mm}}^{\text{-2}}\), |
The interaction matrix is constructed in both cases from the following values
\(\text{H1}=0.1024,\text{H2}=0.7,\text{H3=H4=H5=H6}=0.1\)
The family of sliding systems is cubic (\(\text{CC}\)).
1.4. Properties of homogenized polycrystal#
Behavior POLYCRISTAL homogenized (BZ method) with 30 phases, whose orientations are defined by:
COMPORP = DEFI_COMPOR (POLYCRISTAL =( _F (MONOCRISTAL = COMPORT,
FRAC_VOL =0.033333,
ANGL_REP =( 84.0,349.0,233.0,),),
_F (MONOCRISTAL = COMPORT,
FRAC_VOL =0.033333,
ANGL_REP =( 348.0,24.0,172.0,),),
_F (MONOCRISTAL = COMPORT,
FRAC_VOL =0.033333,
ANGL_REP =( 327.0,126.0,335.0,),),
_F (MONOCRISTAL = COMPORT,
FRAC_VOL =0.033333,
ANGL_REP =( 235.0,7.0,184.0,),),
_F (MONOCRISTAL = COMPORT,
FRAC_VOL =0.033333,
ANGL_REP =( 72.0,338.0,73.0,),),
_F (MONOCRISTAL = COMPORT,
FRAC_VOL =0.033333,
ANGL_REP =( 136.0,285.0,103.0,),),
_F (MONOCRISTAL = COMPORT,
FRAC_VOL =0.033333,
ANGL_REP =( 96.0,128.0,46.0,),),
_F (MONOCRISTAL = COMPORT,
FRAC_VOL =0.033333,
ANGL_REP =( 253.0,265.0,288.0,),),
_F (MONOCRISTAL = COMPORT,
FRAC_VOL =0.033333,
ANGL_REP =( 329.0,184.0,274.0,),),
_F (MONOCRISTAL = COMPORT,
FRAC_VOL =0.033333,
ANGL_REP =( 164.0,169.0,107.0,),),
_F (MONOCRISTAL = COMPORT,
FRAC_VOL =0.033333,
ANGL_REP =( 220.0,26.0,179.0,),),
_F (MONOCRISTAL = COMPORT,
FRAC_VOL =0.033333,
ANGL_REP =( 79.0,14.0,203.0,),),
_F (MONOCRISTAL = COMPORT,
FRAC_VOL =0.033333,
ANGL_REP =( 251.0,342.0,329.0,),),
_F (MONOCRISTAL = COMPORT,
FRAC_VOL =0.033333,
ANGL_REP =( 226.0,217.0,337.0,),),
_F (MONOCRISTAL = COMPORT,
FRAC_VOL =0.033333,
ANGL_REP =( 51.0,290.0,315.0,),),
_F (MONOCRISTAL = COMPORT,
FRAC_VOL =0.033333,
ANGL_REP =( 124.0,67.0,241.0,),),
_F (MONOCRISTAL = COMPORT,
FRAC_VOL =0.033333,
ANGL_REP =( 228.0,163.0,9.0,),),
_F (MONOCRISTAL = COMPORT,
FRAC_VOL =0.033333,
ANGL_REP =( 274.0,56.0,275.0,),),
_F (MONOCRISTAL = COMPORT,
FRAC_VOL =0.033333,
ANGL_REP =( 203.0,25.0,99.0,),),
_F (MONOCRISTAL = COMPORT,
FRAC_VOL =0.033333,
ANGL_REP =( 118.0,190.0,269.0,),),
_F (MONOCRISTAL = COMPORT,
FRAC_VOL =0.033333,
ANGL_REP =( 225.0,50.0,295.0,),),
_F (MONOCRISTAL = COMPORT,
FRAC_VOL =0.033333,
ANGL_REP =( 45.0,129.0,310.0,),),
_F (MONOCRISTAL = COMPORT,
FRAC_VOL =0.033333,
ANGL_REP =( 248.0,21.0,292.0,),),
_F (MONOCRISTAL = COMPORT,
FRAC_VOL =0.033333,
ANGL_REP =( 218.0,247.0,150.0,),),
_F (MONOCRISTAL = COMPORT,
FRAC_VOL =0.033333,
ANGL_REP =( 196.0,299.0,81.0,),),
_F (MONOCRISTAL = COMPORT,
FRAC_VOL =0.033333,
ANGL_REP =( 152.0,64.0,148.0,),),
_F (MONOCRISTAL = COMPORT,
FRAC_VOL =0.033333,
ANGL_REP =( 33.0,292.0,311.0,),),
_F (MONOCRISTAL = COMPORT,
FRAC_VOL =0.033333,
ANGL_REP =( 43.0,207.0,8.0,),),
_F (MONOCRISTAL = COMPORT,
FRAC_VOL =0.033333,
ANGL_REP =( 318.0,51.0,34.0,),),
_F (MONOCRISTAL = COMPORT,
FRAC_VOL =0.033333,
ANGL_REP =( 58.0,169.0,224.0,),),),
LOCALISATION ='BZ', MU_LOCA =mu);
1.5. Boundary conditions and loads#
|
: |
|
: |
|
: |
|
: |
The load
is increasing linearly from 0 for \(t=0\) to
To reduce the calculation time, this one is carried up to \(t=20s\), i.e. an imposed deformation of \(\text{2 \%}\), in 2000 increments.