Reference problem ===================== Geometry --------- Structure :math:`\mathrm{2D}` is a unitary square plate (:math:`\mathit{LX}\mathrm{=}\mathrm{0,1}`, :math:`\mathit{LY}\mathrm{=}\mathrm{0,1}`). A "straight" interface divides the domain into 2 sub-domains. The interface branches off in the vicinity of the center of square :math:`(\mathrm{0,}0.5)` with an angle :math:`\theta \mathrm{=}\mathrm{67,5}°` from the horizontal. .. image:: images/10000201000000EE000000E060973FFD7F104D23.png :width: 3.3028in :height: 3.3055in .. _RefImage_10000201000000EE000000E060973FFD7F104D23.png: **Figure** 1.1-1 **: Geometry of the cracked plate** The interface is defined analytically by the union of 2 line segments, whose respective equations are: * :math:`X=0` for the vertical segment. * :math:`Y\mathrm{=}2x+0.55` for the oblique segment. The intersection point of the 2 line segments is calculated to be located on the edge where the interface forks: * :math:`(\mathrm{0,}0.55)` for :math:`A` and :math:`B` models, see * :math:`(\mathrm{0,}0.6)` for :math:`C` and :math:`D` models, see .. image:: images/1000000000000360000002098B3E85B805699CF1.png :width: 6.889in :height: 4.1535in .. _RefImage_1000000000000360000002098B3E85B805699CF1.png: Figure 1.1-2: "zoom" in the vicinity of the bifurcation point .. image:: images/10000201000003600000020958070A9972EF1609.png :width: 6.889in :height: 4.1535in .. _RefImage_10000201000003600000020958070A9972EF1609.png: Figure 1.1-3: "zoom" in the vicinity of the bifurcation point Material properties ---------------------- Young's module: :math:`E=210{10}^{9}\mathrm{Pa}` Poisson's ratio: :math:`\nu =0` .. _Ref193800026: Boundary conditions and loads ------------------------------------- *Modeling* :math:`A`: The interface divides the domain into 2 sub-domains. The solution is imposed on the move on each sub-domain, thanks to Dirichlet conditions at the edges: * on edge :math:`\mathit{LIG2}`: :math:`\mathit{DX}=-1` and :math:`\mathit{DY}=0` * on edge :math:`\mathit{LIG4}`: :math:`\mathit{DX}=\text{+}1` and :math:`\mathit{DY}=0` There is no contact at the interface level. We are just interested in the movements of the 2 blocks, which can interpenetrate each other. The imposed Dirichlet conditions also block rigid body movements in the 2 sub-domains. *Models* :math:`B`, :math:`C` and :math:`D`: Same load as in modeling :math:`A`. Benchmark solution --------------------- *Modeling* :math:`A`: By construction, the field of movement is uniform on each sub-block. * On the sub-domain on the right, we have: :math:`\mathit{DX}=-1` and :math:`\mathit{DY}=0` * On the sub-domain on the left, we have: :math:`\mathit{DX}=\text{+}1` and :math:`\mathit{DY}=0` *Modeling* :math:`B`: Same analytical solution as modeling :math:`A` *Modeling* :math:`C`: Same analytical solution as modeling :math:`A` *Modeling* :math:`D`: Same analytical solution as modeling :math:`A` Bibliographical references --------------------------- .. _Ref112833260: .. _Ref112833703: 1. GENIAUT S., MASSIN P.: eXtended Finite Element Method, *Code_Aster* Reference Manual, [:ref:`R7.02.12 `]