Reference problem ===================== Geometry --------- Structure :math:`\mathrm{2d}` is a unit square: :math:`\mathit{LX}\mathrm{=}1m` and :math:`\mathrm{LY}=1m` (Figure). +------------------------------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | | | + .. image:: images/10000000000001D9000001C359B1BA019214653F.png + .. image:: images/100000000000020E000001C38B9C795AD10E9DE2.png + | :width: 2.3748in | :width: 2.6421in | + :height: 2.2642in + :height: 2.2642in + | | | + Figure 1.1-1: Healthy Plate Geometry + Figure 1.1-2: Plate geometry with fictional crack + | | | +------------------------------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ For the purposes of the test case, the same domain is also considered in the presence of a fictional crack, straight and emerging on the right, located halfway up (Figure). Note :math:`{P}^{\text{+}}` the coordinate point :math:`\left(\mathit{LX},{\mathit{LY}}^{\text{+}}/2\right)` (located on the upper lip), :math:`{P}^{\text{-}}` the coordinate point :math:`\left(\mathit{LX},{\mathit{LY}}^{\text{-}}/2\right)` (located on the lower lip), and :math:`Q` the coordinate point :math:`\left(\mathit{LX}/\mathrm{2,}\mathit{LY}/2\right)` (located at the tip of the crack). *Note:* *This crack is qualified as fictional because it does not constitute a step in the domain's border, and therefore has no impact on the solution of the reference problem. Its presence is only due to the computer validation of the tested functionality.* Material properties ---------------------- Thermal conductivity: :math:`\lambda =1{\mathit{W.m}}^{\text{-1}}\mathrm{.}{K}^{\text{-1}}` Calorific volume capacity: :math:`\rho {C}_{p}=2\mathit{J.m}-{\mathrm{3.K}}^{-1}` .. _RefNumPara__11653_1489988600: Boundary conditions and loads ------------------------------------- We impose a temperature :math:`\text{}\stackrel{̄}{T}{\text{}}^{\text{inf}}=10°C` on the nodes of segment :math:`\mathit{AB}` and :math:`\text{}\stackrel{̄}{T}{\text{}}^{\text{sup}}=20°C` on the nodes of segment :math:`\mathit{CD}` (see Figure). .. _RefNumPara__11657_1489988600: Initial conditions -------------------- None (the problem is stationary)