2. Reference solution#
2.1. Calculation method#
It is an analytical solution. In this configuration the problem is one-dimensional and the heat equation is reduced to the following differential equation:
\(\frac{{d}^{2}T}{{\mathit{dy}}^{2}}=0\) with conditions \(T(y\mathrm{=}0)\mathrm{=}\text{}\stackrel{ˉ}{T}{\text{}}^{\text{inf}}\) and \(T(y\mathrm{=}\mathit{LY})\mathrm{=}\text{}\stackrel{ˉ}{T}{\text{}}^{\text{sup}}\)
This equation has the following solution:
\(T(y)\mathrm{=}(\text{}\stackrel{ˉ}{T}{\text{}}^{\text{sup}}\mathrm{-}\text{}\stackrel{ˉ}{T}{\text{}}^{\text{inf}})\frac{y}{\mathit{LY}}+\text{}\stackrel{ˉ}{T}{\text{}}^{\text{inf}}\)
2.2. Reference quantities and results#
The temperature is tested at points \({P}^{\text{+}}\), \({P}^{\text{-}}\) and \(Q\) (see Figure):
\(T(\frac{\mathit{LY}}{2})=\frac{(\text{}\stackrel{̄}{T}{\text{}}^{\text{sup}}+\text{}\stackrel{̄}{T}{\text{}}^{\text{inf}})}{2}\), digital application: \(T(\frac{\mathit{LY}}{2})=15°C\)
The two components (space constants) of the temperature gradient are also tested:
\({\partial }_{x}T=0\), digital application: \({\partial }_{x}T=0°{\mathit{C.m}}^{-1}\)
\({\partial }_{y}T=\frac{(\text{}\stackrel{̄}{T}{\text{}}^{\text{sup}}-\text{}\stackrel{̄}{T}{\text{}}^{\text{inf}})}{\mathit{LY}}\), digital application: \({\partial }_{y}T=10°{\mathit{C.m}}^{-1}\)
Identification |
Reference type |
Reference value |
Points \({P}^{\text{+}}\), \({P}^{\text{-}}\), and \(Q\) - \(\mathit{TEMP}\) |
“ANALYTIQUE” |
\(15°C\) |
In every way, \(\mathit{DTX}\) |
“ANALYTIQUE” |
\(0°{\mathit{C.m}}^{-1}\) |
In every way, \(\mathit{DTY}\) |
“ANALYTIQUE” |
\(10°{\mathit{C.m}}^{-1}\) |