2. Modeling A#
The modeling is 3D with hexahedral elements.
The stress tensor imposed on the material is equal to:
# SIXX SIYY SIZZ SIXY SIXZ SIYZ
# 1.E+02 2.E+02 1E+03 0. 5.E+01 1.E+02
It is then easy to calculate the various components of field SIRO_ELEM on facets whose normals are respectively the vectors \((\mathrm{0.,}\mathrm{0.,}1.)\) and \((\mathrm{0.,}\mathrm{0.,}-1.)\):
Normal \((\mathrm{0.,}\mathrm{0.,}1.)\) SIG_NX 0. SIG_NY 0. SIG_NZ 1.E+03 SIG_N 1.E+03 SIG_TX 5.E+01 SIG_TY 1.E+02 SIG_TZ 0. # SIG_T1X -1.E+02 SIG_T1Y 0. SIG_T1Z 0. SIG_T1 1.E+02 SIG_T2X 0. # SIG_T2Y -2.E+02 SIG_T2Z 0. # SIG_T2 2.E+02 |
Normal \((\mathrm{0.,}\mathrm{0.,}-1.)\) SIG_NX 0. SIG_NY 0. # SIG_NZ -1.E+03 SIG_N 1.E+03 # SIG_TX -5.E+01 # SIG_TY -1.E+02 SIG_TZ 0. # SIG_T1X -1.E+02 SIG_T1Y 0. SIG_T1Z 0. SIG_T1 1.E+02 SIG_T2X 0. # SIG_T2Y 2.E+02 SIG_T2Z 0. SIG_T2 2.E+02 |