Benchmark solution ===================== Calculation method ----------------- The reference solution is obtained by a calculation carried out with *Code_Aster* by explicitly giving the relationships between the degrees of freedom with the keyword LIAISON_DDL of the AFFE_CHAR_MECA command. The relationships are of the following form: • For the degrees of freedom of the slave nodes given under the simple keyword DDL. :math:`\mathrm{DDL}({N}_{\mathrm{escl}})={\sum }_{i}{\mathrm{Coeff}}_{i}\ast \mathrm{DDL}({N}_{\mathrm{maître}}^{i})` with i: master mesh node containing the slave node. • In the case where TYPE = EXCENTREMENT, the relationship on the degrees of translational freedom of the slave nodes becomes: :math:`\mathrm{DDL}({N}_{\mathrm{escl}})={\sum }_{i}{\mathrm{Coeff}}_{i}\ast (\mathrm{DDL}({N}_{\mathrm{maître}}^{i})+\overrightarrow{\omega ({N}_{\mathrm{maître}}^{i})}\wedge \overrightarrow{{N}_{\mathrm{maître}}^{i}{N}_{\mathrm{escl}}})` Command PROJ_CHAMP gives the coefficient matrix: **matcoeff** = **PROJ_CHAMP (** **PROJECTION =** **' NON '**, **METHODE '**, **=** **' COLLOCATION '**, **MAILLAGE_1 =** **mail**, **MAILLAGE_2 =** **mail**, **VIS_A_VIS = _F (GROUP_MA_2 =** **' MILCUB '**, **GROUP_MA_1 =** **'**' LESCUBES '**,**) **)**, **)**, **)**, **)** This matrix is then used in the AFFE_CHAR_MECA keyword LIAISON_PROJ command in the following way: **CLPROJ =** AFFE_CHAR_MECA ( **... ,** LIAISON_PROJ = _F (MATR_PROJECTION = **matcoeff,** DDL =( **'DX', 'DY', 'DZ'**) **,**) **)**, **)**, ** **)** Reference quantities and results ----------------------------------- The sizes tested are: • All movement components at all mesh nodes. • All components of SIEF_ELGA constraints at all Gauss points and at all subpoints of the model. Uncertainties about the solution ---------------------------- None. It is a comparison between two ways of giving the kinematic relationships between the same degrees of freedom of the slave and master nodes.