Reference problem ===================== Geometry --------- .. image:: images/10000000000003B5000003530F5256798620A785.jpg :width: 3.3807in :height: 3.552in .. _RefImage_10000000000003B5000003530F5256798620A785.jpg: **Figure** 1.1-1 **: Representation of geometry** .. csv-table:: "Point :math:`A`:", ":math:`(\mathrm{0,0}\mathrm{,0})`" "Point :math:`B`:", ":math:`(\mathrm{1,0}\mathrm{,0})`" "Point :math:`C`:", ":math:`(\frac{\sqrt{(2)}}{2},\frac{\sqrt{(2)}}{2}\mathrm{,0})`" "Point :math:`D`:", ":math:`(\mathrm{0,0}\mathrm{,1})`" **Table** 1.1-1 **: Point coordinates** Material properties ---------------------- The material is steel: :math:`E\mathrm{=}2.04{10}^{11}`, :math:`\nu \mathrm{=}0.3`, :math:`\alpha =1.092{10}^{-5}`. Boundary conditions and loads ------------------------------------- Loading on a vertical edge (support for one of the axes of the coordinate system) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The validation of the ARETE_IMPO keyword must require the equivalence of the following conditions: * 1.3.1.1 conditions: Face :math:`\mathrm{DBC}` imposed: :math:`\mathrm{DNOR}=10` Deadlock at points :math:`D,B,C`: :math:`\mathrm{DX}=\mathrm{0,}\mathrm{DY}=\mathrm{0,}\mathrm{DZ}=0` Displacement imposed on the nodes of the :math:`\mathrm{DA}` edge: :math:`\mathrm{DZ}=0` * 1.3.1.2 conditions: Face :math:`\mathrm{DBC}` imposed: :math:`\mathrm{DNOR}=10` Deadlock at points :math:`D,B,C`: :math:`\mathrm{DX}=\mathrm{0,}\mathrm{DY}=\mathrm{0,}\mathrm{DZ}=0` Imposed :math:`\mathrm{DA}` edge: :math:`\mathrm{DTAN}=0` except at point :math:`D`. We will validate the equivalence between these conditions by testing the movements at node :math:`A`. Loading on oblique edges ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The validation of the ARETE_IMPO keyword must require the equivalence of the following conditions: * 1.3.2.1 conditions: Blocking at the nodes on the face :math:`\mathrm{ABC}`: :math:`\mathrm{DX}=\mathrm{0,}\mathrm{DY}=\mathrm{0,}\mathrm{DZ}=0` Displacement imposed at the nodes of edge :math:`\mathrm{DA}`: :math:`\mathrm{DZ}=-1` (except at points :math:`D` and :math:`A`) Oblique connection to the nodes of edge :math:`\mathrm{DB}` (except at points :math:`D` and :math:`B`): :math:`\mathrm{DX}=1`, :math:`\mathrm{ANGL}\text{\_}\mathrm{NAUT}=(\mathrm{0,45}\mathrm{,0})` Oblique connection to the nodes of edge :math:`\mathrm{DC}` (except at points :math:`D` and :math:`C`): :math:`\mathrm{DX}=1`, :math:`\mathrm{ANGL}\text{\_}\mathrm{NAUT}=(\mathrm{45,45}\mathrm{,0})` * 1.3.2.2 conditions: Blocking at the nodes on the face :math:`\mathrm{ABC}`: :math:`\mathrm{DX}=\mathrm{0,}\mathrm{DY}=\mathrm{0,}\mathrm{DZ}=0` Imposed :math:`\mathrm{DA}` edge: :math:`\mathrm{DTAN}=1` except at points :math:`D` and :math:`A`. Imposed :math:`\mathrm{DB}` edge: :math:`\mathrm{DTAN}=1` except at points :math:`D` and :math:`B`. Imposed :math:`\mathrm{DC}` edge: :math:`\mathrm{DTAN}=1` except at points :math:`D` and :math:`C`. We will validate the equivalence between these conditions by testing the movements at node :math:`D`.