Reference problem ===================== Geometry --------- The problem being treated is planar. The structure studied is 1 rectangle cut into 2 squares :math:`\mathit{ABCD}` and :math:`\mathit{BEFC}`. The solution is established with a mesh using 2 QUAD4 corresponding to the 2 squares. .. image:: images/Object_1.svg :width: 364 :height: 183 .. _RefImage_Object_1.svg: Material properties ---------------------- elastic material: :math:`E\mathrm{=}10.0` S.I. units :math:`\nu \mathrm{=}0.0` We take :math:`\nu \mathrm{=}0.0` so that we can deal with this plane problem with a layer of 3D elements by having the plane solution. Boundary conditions and loads ------------------------------------- .. csv-table:: "1)", "We apply a point force to point :math:`F`: :math:`\mathit{FY}\mathrm{=}4.0` u.s.i." "2)", "Blocks: Point :math:`A`: :math:`\mathit{DX}\mathrm{=}\mathit{DY}\mathrm{=}0.` point :math:`D`: :math:`\mathit{DX}\mathrm{=}0.`" "3)", "Linear relationships between degrees of freedom:" load case: cas1 :math:`1.0\mathit{DX}(E)\mathrm{-}0.5\mathit{DY}(D)\mathrm{-}0.5\mathit{DY}(C)\mathrm{=}0.0` :math:`1.0\mathit{DY}(E)+0.5\mathit{DX}(D)+0.5\mathit{DX}(C)\mathrm{=}0.0` load case: cas2 :math:`1.0\mathit{DY}(E)+0.5\mathit{DY}(D)+0.5\mathit{DY}(C)\mathrm{=}0.0` :math:`1.0\mathit{DY}(B)+0.5\mathit{DY}(C)+0.5\mathit{DY}(F)\mathrm{=}0.0` The initial conditions are not important here.