Benchmark solution ===================== Calculation method ----------------- The approach consists in combining the following calculations: * the mechanical calculation parameters being dependent on the temperature, a thermal calculation makes it possible to determine the control variable :math:`\mathit{TEMP}` * a mechanical calculation in linear elasticity * an incremental elasto-plastic mechanical calculation * calculation of the energy return rate :math:`{G}_{\mathit{ELAS}}` from the linear mechanical result, at the bottom of the crack :math:`B` * calculation of the energy return rate :math:`{G}_{\mathit{PLAS}}` from the non-linear mechanical result, at the bottom of a crack :math:`B` Then the margin factors are obtained by post-processing via Python using the user Python of the results of calculating the energy recovery rates :math:`{G}_{\mathit{ELAS}}` and :math:`{G}_{\mathit{PLAS}}`, and of the temperature :math:`\mathit{TEMP}` at point :math:`B`. The following quantities are retained: 1. :math:`\mathit{KELAS}`: elastic stress intensity factor 2. :math:`\mathit{KPLAS}`: plastic stress intensity factor 3. :math:`\mathit{FM}\text{\_}\mathit{ASN}`: regulatory margin factor These results are provided and the validation is of the "AUTRE_ASTER" type. Reference quantities and results ----------------------------------- The outputs of operator POST_FM are tested, namely the following quantities at the bottom of the crack: 1. :math:`\mathit{TEMP}`: temperature at the bottom of the crack 2. :math:`\mathit{KIC}`: tenacity at the bottom of a crack 3. :math:`\mathit{KELAS}`: elastic stress intensity factor 4. :math:`\mathit{KPLAS}`: plastic stress intensity factor 5. :math:`\mathit{KCP}`: corrected stress intensity factor 6. :math:`\mathit{FM}\text{\_}\mathit{ASN}`: margin factor (case DSR) 7. :math:`\mathit{FM}\text{\_}\mathit{PLAS}`: regulatory margin factor (case DDR)