1. Reference problem#

1.1. Modeling A#

1.1.1. Geometry#

_images/10000201000003C0000002D0F82204E22C8FE72B.png
_images/10000200000000D3000000D32FBE11A4E7E36C91.png _images/10000200000000D3000000D8861E09A0EFFAA42B.png _images/10000200000001390000013A06F9796DE21D81A3.png

\(\mathrm{Carre1}/\mathrm{carre2}\) \(\mathrm{AC}\) \(\mathrm{cube1}\)

Coordinates of points \((m)\):

\(A:(0.,0.)\)

\(B:(1.,0.)\)

\(C:(0.,0.)\)

\(D:(0.,1.)\)

Cube geometry:

Center: \((0.,0.,-0.5)\)

Side: \(L=1\)

Mesh group:

\(\mathrm{carre}1\) surface \(A,B,C,D\)

\(\mathrm{carre}2\) surface \(A,B,C,D\)

\(\mathrm{AC}\) segment \(\mathrm{AC}\)

\(\mathrm{cube1}\) volume

1.1.2. Material properties#

Not applicable

1.1.3. Boundary conditions and loads#

Not applicable

1.2. Benchmark solution#

1.2.1. Calculation method#

Calculating the reference for the temperature field

The field that is projected from one model to the other is an analytical temperature field whose evolution is as follows:

\(T=3.+X+Y\)

The reference solution is identical to the projected analytical field.

Calculating the reference for the constraint field

The objective is to change the coordinate system, after projecting a known stress field onto a mesh into a 3D mesh.

Transition from a cylindrical coordinate system (\(\mathrm{XOY}\)) to a Cartesian coordinate system \(\mathrm{3D}\) (\(\mathrm{XYZ}\)).

The constraint field \((N/{m}^{2})\) in the axisymmetric coordinate system (axis \(\mathrm{OY}\)) is as follows:

  • \(\mathrm{SIXX}=2\)

  • \(\mathrm{SIYY}=y\)

  • \(\mathrm{SIZZ}=1\)

  • \(\mathrm{SIXY}=0.\)

The constraint field in the Cartesian coordinate system (\(\mathrm{3D}\)) is obtained by performing:

  • A projection of the stress tensor evaluated on mesh \(\mathrm{2D}\mathrm{axis}\) onto the 3D mesh.

  • Change of frame of the stress tensor \([{\sigma }_{\mathrm{3D}}]=[P][{\sigma }_{\mathrm{cyl}}]{[P]}^{T}\) or \([P]\) represents the change of frame matrix.

The numerical results are as follows:

NOEUD

\(X\)

\(Y\)

\(Z\)

\(\mathrm{SIXX}\)

\(\mathrm{SIYY}\)

\(\mathrm{SIZZ}\)

N258

-1/3

-1/3

-1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/6

N33

-1/3

N108

1/2

2/3

2/3.

1.2.2. Benchmark results#

Projection type

Point

Size \((°C)\)

Reference

\(\mathrm{carre1}\to \mathrm{carre2}\)

\(A\)

\(\mathrm{TEMP}\)

\(3\)

\(B\)

\(\mathrm{TEMP}\)

\(4\)

\(C\)

\(\mathrm{TEMP}\)

\(5\)

\(\mathrm{N364}\)

\(\mathrm{TEMP}\)

\(4.66\)

\(\mathrm{carre2}\to \mathrm{carre1}\)

\(A\)

\(\mathrm{TEMP}\)

\(3\)

\(B\)

\(\mathrm{TEMP}\)

\(4\)

\(C\)

\(\mathrm{TEMP}\)

\(5\)

\(\mathrm{N355}\)

\(\mathrm{TEMP}\)

\(3.75\)

\(\mathrm{carre2}\to \mathrm{AC}\)

\(A\)

\(\mathrm{TEMP}\)

\(3\)

\(C\)

\(\mathrm{TEMP}\)

\(5\)

\(\mathrm{N356}\)

\(\mathrm{TEMP}\)

\(4\)

\(\mathrm{AC}\to \mathrm{carre2}\)

\(A\)

\(\mathrm{TEMP}\)

\(3\)

\(B\)

\(\mathrm{TEMP}\)

\(4\)

\(\mathrm{carre2}\to \mathrm{cube1}\)

\(C\)

\(\mathrm{TEMP}\)

\(5\)

\(\mathrm{N363}\)

\(\mathrm{TEMP}\)

\(3.33\)

\(\mathrm{N341}\)

\(\mathrm{TEMP}\)

\(3.69371\)

Projection type

Point

Size \((N/{m}^{2})\)

Reference

\(\mathrm{carre2}\to \mathrm{cube1}\)

\(\mathrm{N258}\)

\(\mathrm{SIXX}\)

\(1.5\)

\(\mathrm{N258}\)

\(\mathrm{SIYY}\)

\(1.5\)

\(\mathrm{N258}\)

\(\mathrm{SIZZ}\)

\(0.16\)

\(\mathrm{N33}\)

\(\mathrm{SIXX}\)

\(2\)

\(\mathrm{N33}\)

\(\mathrm{SIYY}\)

\(1\)

\(\mathrm{N33}\)

\(\mathrm{SIZZ}\)

\(1\)

\(\mathrm{N108}\)

\(\mathrm{SIXX}\)

\(1\)

\(\mathrm{N108}\)

\(\mathrm{SIYY}\)

\(2\)

\(\mathrm{N108}\)

\(\mathrm{SIZZ}\)

\(0.66\)

1.3. B modeling#

1.3.1. Geometry#

_images/Shape1.gif

Cube side: \(L=2\)

1.3.2. Material properties#

      • \(E=2N/{m}^{2}\)

      • \(\nu =0.\)

1.3.3. Boundary conditions and loads#

Compulsory trips

  • plan \(z=\mathrm{1m}\) \(\mathrm{DX}=0.=\mathrm{DY}=0.=\mathrm{DZ}=0.\)

  • plan \(z=3m\) \(\mathrm{DZ}=\mathrm{2.m}\)

1.4. Benchmark solution#

1.4.1. Calculation method#

The Poisson ratio is zero \(\nu =0\) which gives us

\({\sigma }_{\mathrm{xx}}={\sigma }_{\mathrm{yy}}={\sigma }_{\mathrm{xy}}={\sigma }_{\mathrm{xz}}={\sigma }_{\mathrm{yz}}=0\)

\({\sigma }_{\mathrm{zz}}=E\epsilon =E\frac{\mathrm{DZ}}{L}\)

1.4.2. Benchmark results#

\(\mathrm{SIZZ}=2N/{m}^{2}\) At any point in the cube