3. Operands#

Reminder:

The recombination of FOURIER on the trips is written as:

\(u(\theta )\mathrm{=}\mathrm{\sum }_{l\mathrm{=}0}^{N}\left[\underset{{A}^{s}}{\underset{\underbrace{}}{(\begin{array}{ccc}\mathrm{cos}l\theta & 0& 0\\ 0& \mathrm{cos}l\theta & 0\\ 0& 0& \mathrm{-}\mathrm{sin}l\theta \end{array})}}{u}_{l}^{s}+\underset{{A}^{a}}{\underset{\underbrace{}}{(\begin{array}{ccc}\mathrm{sin}l\theta & 0& 0\\ 0& \mathrm{sin}l\theta & 0\\ 0& 0& \mathrm{cos}l\theta \end{array})}}{u}_{l}^{a}\right]\)

A symmetric harmonic is therefore recombined with the matrix \({A}^{s}\), an antisymmetric harmonic with the matrix \({A}^{a}\).

The recombination of FOURIER on deformations and stresses is written as:

\(\varepsilon (\theta )\mathrm{=}\mathrm{\sum }_{l\mathrm{=}0}^{N}(\left[\begin{array}{cc}\mathrm{cos}l\theta {I}_{4}& {0}_{\mathrm{4,2}}\\ {0}_{\mathrm{2,4}}& \mathrm{-}\mathrm{sin}l\theta {I}_{2}\end{array}\right]{\varepsilon }_{l}^{s}+\left[\begin{array}{cc}\mathrm{sin}l\theta {I}_{4}& {0}_{\mathrm{4,2}}\\ {0}_{\mathrm{2,4}}& \mathrm{cos}l\theta {I}_{2}\end{array}\right]{\varepsilon }_{l}^{a})\)

3.1. Operand RESULTAT#

♦ RESULTAT = resu,

Name of the Fourier_elas or Fourier_ther type concept from which we will recombine the modes.

3.2. Operand NOM_CHAM#

♦ NOM_CHAM = symb name,

Symbolic name of the recombined field (s).

3.3. Operand ANGLE#

♦ ANGLE = langl,

Angle (s) in degrees of the section (s) where the recombination of FOURIER takes place.