3. Operands#
3.1. Operand RESULTAT#
♦ RESULTAT = resu,
Name of a result concept such as evol_elas or evol_noli.
3.2. Operands NUME_ORDRE/INST#
◊/INST: post-processing calculation time
/NUME_ORDRE: serial number of post-processed fields
If neither INST nor NUME_ORDRE are entered, by default the field corresponding to the first calculated moment will be processed.
3.3. Operand CHAM#
3.4. ♦ CHAM = /” EFFORT “#
/” DEFORMATION “
“EFFORT”: field EFGE_ELNO containing 8 components:
the 3 membrane forces \({N}_{\mathrm{xx}},{N}_{\mathrm{yy}},{N}_{\mathrm{xy}}\)
the 3 bending forces \({M}_{\mathrm{xx}},{M}_{\mathrm{yy}},{M}_{\mathrm{xy}}\)
the 2 \({T}_{x},{T}_{y}\) shear forces
“DEFORMATION”: field containing the 6 components of the deformation tensor.
The deformations in the thickness are calculated from the generalized deformations of the mean surface DEGE_ELNO \(({e}_{\mathrm{xx}},{e}_{\mathrm{yy}},{e}_{\mathrm{xy}},{\kappa }_{\mathrm{xx}},{\kappa }_{\mathrm{yy}},{\kappa }_{\mathrm{xy}},{\gamma }_{x},{\gamma }_{y})\) where:
\(({e}_{\mathrm{xx}},{e}_{\mathrm{yy}},{e}_{\mathrm{xy}})\) refer to membrane deformations,
\(({\kappa }_{\mathrm{xx}},{\kappa }_{\mathrm{yy}},{\kappa }_{\mathrm{xy}})\) refer to flexural deformations,
\(({\gamma }_{x},{\gamma }_{y})\) refer to deformations associated with transverse shear.
The deformations in the thickness (3D tensor) are obtained by the formulas:
\({\epsilon }_{\mathrm{xx}}={e}_{\mathrm{xx}}+h{\kappa }_{\mathrm{xx}}\)
\({\epsilon }_{\mathrm{yy}}={e}_{\mathrm{yy}}+h{\kappa }_{\mathrm{yy}}\)
\({\epsilon }_{\mathrm{xy}}={e}_{\mathrm{xy}}+h{\kappa }_{\mathrm{xy}}\)
\(2{\epsilon }_{\mathrm{xz}}={\gamma }_{x}\)
\(2{\epsilon }_{\mathrm{yz}}={\gamma }_{y}\)
3.5. Keyword factor COOR_POINT#
♦ COOR_POINT = _F (
3.5.1. Operand COOR#
♦ COOR =( x, y, z, h,)
\(x,y,z\): coordinates of the point, positioned on the neutral fiber
\(h\): position of the point in the thickness of the shell
(\(-e/2\le h\le +e/2\), where \(e\) is the thickness)
If CHAM = “EFFORT”, \(h\) is ignored, the forces being calculated by integrating the stresses into the thickness. If the user enters a non-zero \(h\) an alarm message is sent to indicate that it is not taken into account.