5. Examples#
5.1. Solving by the direct method MULT_FRONT#
Composition of the assembled matrix and of the second member:
We have previously calculated the elementary terms KEL, FEL.
K = ASSE_MATRICE (MATR_ELEM = KEL, NUME_DDL =NAKED,) F = ASSE_VECTEUR (MATR_ELEM = FEL, NUME_DDL =NAKED,)
Factorization:
Resolution:
for the use of kinematic loads (with the elimination of imposed degrees of freedom), see the example given in command AFFE_CHAR_CINE [U4.44.03].
5.2. Solving by the MUMPS method#
NAKED = NUME_DDL (MATR_RIGI = KEL)
K = ASSE_MATRICE (MATR_ELEM = KEL, NUME_DDL = NU)
F = ASSE_VECTEUR (VECT_ELEM = FEL, NUME_DDL = NU)
K = FACTORISER (reuse= K, MATR_ASSE = K, METHODE = 'MUMPS')
dep = RESOUDRE (CHAM_NO = F, MATR = K)
5.3. Resolution by the preconditioned conjugate gradient method#
NAKED = NUME_DDL (MATR_RIGI = KEL)
K = ASSE_MATRICE (MATR_ELEM = KEL, NUME_DDL = NU)
F = ASSE_VECTEUR (VECT_ELEM = FEL, NUME_DDL = NU)
KPREC = FACTORISER (MATR_ASSE = K, METHODE = 'GCPC',
PRE_COND =” LDLT_INC “)
dep = RESOUDRE (CHAM_NO = F, MATR = K, MATR_PREC = KPREC,
NMAX_ITER = 1000, RESI_RELA = 1e-07 )
5.4. Solving by the PETSC method#
NAKED = NUME_DDL (MATR_RIGI = KEL)
K = ASSE_MATRICE (MATR_ELEM = KEL, NUME_DDL = NU)
F = ASSE_VECTEUR (VECT_ELEM = FEL, NUME_DDL = NU)
K = FACTORISER (refuse=K, MATR_ASSE = K, METHODE = 'PETSC')
dep = RESOUDRE (CHAM_NO = F, MATR = K, MATR_PREC = K,
ALGORITHME =” GMRES “, NMAX_ITER = 1000, RESI_RELA = 1e-07)