Examples ======== Example 1 ----------- **Comparison of the two methods** **STURMet** **** APMsur the GEP standard of**** SDLD02a ** (for STURMles terminals are mentioned in frequency). In the first calculation, the aim is to count the number of modes contained in the frequency band :math:`\mathrm{[}0;5\mathrm{]}` with the usual method: STURM. In the second, we do the same thing with method APM, but with the disk centered at the origin (centre=0+0j) and with radius= :math:`{(2\pi .5)}^{2}` (because there is no unit change with APM). Both results are shown in file MESSAGE. f1=5.0 nbmod01 = **INFO_MODE** (MATR_RIGI = MATASSR, MATR_MASS =, = MATASSM, TYPE_MODE =' **DYNAMIQUE** ', FREQ =( 0. , f1), COMPTAGE =_F (METHODE =' **STURM** '),) w1= (2*pi*f1) **2 nbmod11 = **INFO_MODE** (MATR_RIGI = MATASSR, MATR_MASS =, = MATASSM, TYPE_MODE =' **MODE_COMPLEXE** ', TYPE_CONTOUR =' CERCLE ', CENTRE_CONTOUR =0.0+0.0j, RAYON_CONTOUR =w1, COMPTAGE =_F (METHODE =' **APM** '),) With INFO =1, this causes the following displays in file MESSAGE: -------------------------------------------------------- VERIFICATION OF SPECTRE OF FREQUENCES (**METHODE OF STURM**) **PAS OF FREQUENCE** DANS THE BANDE (0.000E+00, 5.000E+00) ... (METHODE APM) POUR LES 3 NIVEAUX FROM DISCRETISATION SUIVANTS --- 20 --- 40 --- 80 --- NOMBRE OF VALEURS PROPRES DETECTEES --- 0 --- 0 --- 0 --- 0 --- (METHODE APM) CONVERGENCE OF THE HEURISTIQUE -------------------------------------------------------- VERIFICATION FROM SPECTRE TO FREQUENCE (**METHODE FROM ARGUMENT PRINCIPAL**) **PAS OF FREQUENCE** DANS THE DISQUE CENTRE EN (0.000E+00, 0.000E+00) AND RAYON 9.870E+02 Here, Sturm's method required only two factorizations. Method APM converged immediately on the first iteration. But this one required :math:`20+40+80\mathrm{=}140` factorizations. Counting eigenvalues in the complex plan comes at a price (which we can't currently reduce)! The number of natural frequencies (0 in this case) as well as the search criteria are saved in a table. Printing, by IMPR_TABLE, the concepts NBMOD01et NBMOD11produits by INFO_MODE in the previous example shows the following composition: **nbmod01** FREQ_MIN FREQ_MAX NB_MODE 0.00000E+00 5.00000E+00 0 ... **nbmod11** CENTRE_R CENTRE_I RAYON NB_MODE 0.00000E+00 0.00000E+00 9.86960E+02 0 When INFO_MODE is called with the TYPE_MODE =' MODE_FLAMB 'option, the tables produced contain three columns: NB_MODE (the number of eigenvalues) as well as CHAR_CRIT_MIN and CHAR_CRIT_MAX, the search criteria for dynamic problems with linear buckling. Example #2 ----------- **Count for QEP of** **SDLL123a .** This time, only the APM method is legal. Count the number of modes contained in the circle centered at the origin (:math:`\mathit{centre}\mathrm{=}0+\mathrm{0j}`) and whose radius is :math:`\mathit{rayon}\mathrm{=}124\mathrm{\times }2\pi`. f1=124.*2.*pi nbmod4= **INFO_MODE** (MATR_RIGI = RIGIDITE, MATR_MASS =, = MASSE, MATR_C = GYOM, TYPE_MODE =' **MODE_COMPLEXE** ', TYPE_CONTOUR =' CERCLE ', CENTRE_CONTOUR =0.0+0.0j, RAYON_CONTOUR =f1, COMPTAGE =_F (METHODE =' **APM** ',),) In INFO =1 this causes the following displays in file MESSAGE: (METHODE APM) POUR LES 3 NIVEAUX FROM DISCRETISATION SUIVANTS --- 20 --- 40 --- 80 --- NOMBRE OF VALEURS PROPRES DETECTEES --- 4 --- 4 --- 4 --- 4 --- (METHODE APM) CONVERGENCE OF THE HEURISTIQUE -------------------------------------------------------- VERIFICATION FROM SPECTRE TO FREQUENCE (**METHODE FROM ARGUMENT PRINCIPAL**) **THE NOMBRE OF FREQUENCES** DANS THE DISQUE CENTRE EN (0.000E+00, 0.000E+00) AND RAYON 7.791E+02 EST **4** And the printout of the table produced (nbmod4) by IMPR_TABLE gives: CENTRE_R CENTRE_I RAYON NB_MODE 0.00000E+00 0.00000E+00 7.79115E+02 4