• lists
      • commands by name
      • all documents
    • u0
      • u0.00.01: Guide for reading the User Documentation
    • u1
      • u1.02.00: Introduction to code_aster
      • u1.03.00: The main operating principles of Code_Aster
      • u1.03.01: Supervisor and command language
      • u1.03.02: Python methods for accessing Aster objects
      • u1.03.03: Calculation performance indicators (time/memory)
      • u1.04.00: Code_Aster access interface: astk
      • u1.05.00: An easy example of use
    • u2
      • u2.00.01: Guide for reading U2 methodological documentation
      • u2.01.02: Instructions for the use of boundary conditions treated by elimination
      • u2.01.04: Code_Aster quantity documentation
      • u2.01.05: Stresses, efforts, forces, and deformations
      • u2.01.09: Definition of a constraint field and an initial internal variables field
      • u2.01.10: Instructions for use on the choice of finite elements
      • u2.01.11: Instructions for using the manipulation of fields and tables
      • u2.02.01: Instructions for the use of plate, shell, grid and membrane elements
      • u2.02.02: Instructions for using elements TUYAU_ *
      • u2.02.03: Instructions for using discrete elements
      • u2.03.04: User manual for thermo-metallo-mechanical calculations on steels
      • u2.03.05: User manual for numerical welding simulation
      • u2.03.06: Carrying out a building structure study with prestressed cables
      • u2.03.07: Overview of the tools available to perform concrete Civil Engineering structural calculations
      • u2.03.08: Realization of a civil engineering study with prestress cables in rapid dynamics via the macro command CALC_EUROPLEXUS
      • u2.03.09: Overview of soil and rock behavior models, joints
      • u2.03.10: Instructions for modeling junctions between reinforced concrete civil engineering structural elements
      • u2.03.11: Recommendations for modeling "SCS"
      • u2.04.01: Tips for using STAT_NON_LINE
      • u2.04.02: Tips for implementing non-linear calculations
      • u2.04.03: Choice of elasto- (visco) -plastic behavior
      • u2.04.04: Instructions for using contact in code_aster
      • u2.04.05: Model THM User Manual
      • u2.04.06: How to dig a tunnel: excavation methodology
      • u2.04.07: Use of transient resolution methods for highly nonlinear, almost static problems
      • u2.05.00: Realization of a calculation to predict breakage by cleavage
      • u2.05.01: Instructions for use of fracture mechanics operators for the classical approach (non-linear elasticity)
      • u2.05.02: Instructions for using the X method- FEM
      • u2.05.04: User manual for limit load calculation
      • u2.05.05: Vibratory fatigue structure calculation
      • u2.05.06: Carrying out damage calculations in a semi-static manner (fragile rupture)
      • u2.05.07: Instructions for using cohesive zone models
      • u2.05.08: Carrying out a calculation to predict breakage by cleavage
      • u2.06.01: Implementation of a calculation of the natural modes of a structure
      • u2.06.03: Mechanical damping modeling instructions
      • u2.06.04: Instructions for the construction of dynamic scale models
      • u2.06.10: Carrying out a building structure study under seismic loading
      • u2.06.11: Analysis of the seismic behavior of large metal reservoirs
      • u2.06.13: General tips for using the DYNA_NON_LINE operator
      • u2.06.14: Tips for implementing Fluid-Structure Interaction calculations
      • u2.06.31: Gyroscopy modeling instructions
      • u2.06.32: Instructions for implementing rotor calculations
      • u2.06.41: Dynamic model validation by compute-test correlation
      • u2.06.42: Implementation of modal adjustment procedures
      • u2.07.01: Modeling user manual FOURIER
      • u2.07.02: Instructions for using static substructuring
      • u2.07.03: Conducting a structural modification study using measured data
      • u2.07.04: Dynamic model condensation by static substructuring
      • u2.07.05: Implementation of calculation by dynamic substructuring
      • u2.07.07: Implementation of calculation by dynamic substructuring in the presence of IFS
      • u2.08.01: Strategies for adapting meshes with HOMARD
      • u2.08.03: Manual for using linear solvers
      • u2.08.04: Instructions for buckling calculation
      • u2.08.05: Propagation of uncertainties and calculation of fragility curves
      • u2.08.06: Parallelism user manual
      • u2.08.07: Parametric calculations - Distribution of calculations
      • u2.08.08: Using the Manufactured Solutions Method for Software Verification
      • u2.08.09: Nonlinear mesh adaptation
      • u2.09.02: Calculating a stud-flange connection
      • u2.10.01: Instructions for using the coupling between Code_Aster and the behavior laws module UMAT
      • u2.10.02: How to use MFront with code_aster
      • u2.11.01: 1D-3D connector user manual
      • u2.51.01: Grace User Manual for Code_Aster
      • u2.51.02: Plotting curves with Code_Aster
    • u3
      • u3.01.00: Code_Aster mesh file description
      • u3.02.01: Mesh file interface GMSH with Aster
      • u3.03.01: Mesh file interface IDEAS with Aster
      • u3.04.01: Mesh file interface GIBI with Code_Aster
      • u3.11.01: Modelings POU_D_T, POU_D_E, BARRE
      • u3.11.02: Models DIS_T and DIS_TR
      • u3.11.03: Models CABLE and CABLE_POULIE
      • u3.11.04: Modelings POU_D_TG, POU_D_TGM
      • u3.11.05: Modeling POU_D_T_GD
      • u3.11.06: Models TUYAU_3M and TUYAU_6M
      • u3.11.07: Modeling POU_D_EM
      • u3.12.01: Modelings DKT - DST - - Q4G - DKTG - Q4GG
      • u3.12.02: Models COQUE_AXIS
      • u3.12.03: Modeling COQUE_3D
      • u3.12.04: Modeling GRILLE_EXCENTRE, GRILLE_MEMBRANE, and MEMBRANE
      • u3.13.01: Modelings AXIS, D_ PLAN, C_ PLAN
      • u3.13.02: Mechanical AXIS_FOURIER modeling
      • u3.13.03: 2D models_ FLUIDE, 2D_ FLUI_STRU, AXIS_FLUIDE, AXIS_FLUI_STRU
      • u3.13.05: Models AXIS_SI, D_ PLAN_SI, C_ PLAN_SI
      • u3.13.07: Modelings AXIS_INCO_UPG, D_ PLAN_INCO_UPG
      • u3.13.08: Modelings D_ PLAN_HM, D_ PLAN_HHM, D_, D_, D_ PLAN_THM, PLAN_THH, D_ PLAN_THHM, AXIS_HM, AXIS_HHM, AXIS_THM,,, AXIS_THH, AXIS_THHM
      • u3.13.09: 2D_ DIS_T and 2D_ DIS_TR models_
      • u3.13.12: Modeling D_ PLAN_ABSO
      • u3.13.13: 2D Modeling_ FLUI_ABSO
      • u3.13.14: Modelings x_ JOINT, x_, x_ ELDI, x_ INTERFACE and x_ INTERFACE_S
      • u3.14.01: Mechanical 3D and 3D_SI models
      • u3.14.02: 3D models_ FLUIDE, FLUI_STRU, 2D_ FLUI_PESA
      • u3.14.06: 3D Modeling_ INCO_UPG
      • u3.14.07: 3D_HM models, 3D_ HHM ,3D_ THM, 3D_ THH, 3D_ THHM
      • u3.14.09: 3D Modeling_ ABSO
      • u3.14.10: 3D Modeling_ FLUI_ABSO
      • u3.22.01: Models COQUE, COQUE_PLAN, COQUE_AXIS - Phenomenon THERMIQUE
      • u3.23.01: Models AXIS, PLAN,, AXIS_DIAG and PLAN_DIAG - Phenomenon THERMIQUE
      • u3.23.02: AXIS_FOURIER thermal modeling
      • u3.24.01: 3D and 3D models_ DIAG thermal
      • u3.33.01: 3D and PLAN models of the ACOUSTIQUE phenomenon
    • u4
      • u4.01.00: How to read order documentation
      • u4.01.02: New features and changes in orders
      • u4.01.03: What's new and changed in version 7
      • u4.01.04: What's new and changed in version 8
      • u4.01.05: What's new and changed in version 9
      • u4.01.06: What's new and changed in version 10
      • u4.01.09: What's new and changed in version 13
      • u4.03.01: Product concept title and subtitle
      • u4.11.01: Procedure DEBUT
      • u4.11.02: Command FIN
      • u4.11.03: Procedure POURSUITE
      • u4.12.03: Procedure DEFI_FICHIER
      • u4.13.01: Procedure INCLUDE
      • u4.13.04: Operator INFO_EXEC_ASTER
      • u4.14.01: Operator DETRUIRE
      • u4.14.02: Operator COPIER
      • u4.15.01: Procedure MAJ_CATA
      • u4.15.12: Operator DEBUG
      • u4.21.01: Operator LIRE_MAILLAGE
      • u4.22.01: Operator DEFI_GROUP
      • u4.23.01: Operator DEFI_MAILLAGE
      • u4.23.02: Operator CREA_MAILLAGE
      • u4.23.03: Operator ASSE_MAILLAGE
      • u4.23.04: Operator MODI_MAILLAGE
      • u4.24.01: Operator DEFI_SQUELETTE
      • u4.24.02: Operator DEFI_GRILLE
      • u4.25.01: Operator DEFI_FLUI_STRU
      • u4.26.01: Operator DEFI_GEOM_FIBRE
      • u4.31.01: Operator DEFI_CONSTANTE
      • u4.31.02: Operator DEFI_FONCTION
      • u4.31.03: Operator DEFI_NAPPE
      • u4.31.05: Operator FORMULE
      • u4.32.01: Operator CALC_FONC_INTERP
      • u4.32.02: Operator LIRE_FONCTION
      • u4.32.03: Operator RECU_FONCTION
      • u4.32.04: Operator CALC_FONCTION
      • u4.32.05: Operator INFO_FONCTION
      • u4.32.11: Macro-command MACR_SPECTRE
      • u4.32.12: Macro-command CALC_SPECTRE_IPM
      • u4.32.13: Macro-command LISS_SPECTRE
      • u4.32.21: Operator CALC_SPEC
      • u4.33.01: Operator IMPR_FONCTION
      • u4.33.02: Operator CREA_TABLE
      • u4.33.03: Procedure CALC_TABLE
      • u4.34.01: Operator DEFI_LIST_REEL
      • u4.34.02: Operator DEFI_LIST_ENTI
      • u4.34.03: Operator DEFI_LIST_INST
      • u4.34.04: Operator DEFI_LIST_FREQ
      • u4.35.01: Operator DEFI_FONC_FLUI
      • u4.35.02: Operator FONC_FLUI_STRU
      • u4.36.01: Operator LIRE_INTE_SPEC
      • u4.36.02: Operator DEFI_INTE_SPEC
      • u4.36.03: Operator CALC_INTE_SPEC
      • u4.36.04: Operator GENE_ACCE_SEISME
      • u4.36.05: Operator GENE_FONC_ALEA
      • u4.36.08: Macro-command IMPR_ACCE_SEISME
      • u4.36.09: Operator DEFI_PROP_ALEA
      • u4.41.01: Operator AFFE_MODELE
      • u4.41.02: Operator MODI_MODELE
      • u4.41.11: Operator MODI_MODELE_XFEM
      • u4.42.01: Operator AFFE_CARA_ELEM
      • u4.42.02: Macro-command MACR_CARA_POUTRE
      • u4.42.03: Operator DEFI_COMPOSITE
      • u4.42.04: Macro-command DEFI_CABLE_BP
      • u4.42.05: Macro-command CALC_PRECONT
      • u4.42.06: Operator DEFI_GLRC
      • u4.42.07: Operator DEFI_MATER_GC
      • u4.42.08: Operator CALC_BT
      • u4.43.01: Operator DEFI_MATERIAU
      • u4.43.02: Operator INCLUDE_MATERIAU
      • u4.43.03: Operator AFFE_MATERIAU
      • u4.43.04: Operator DEFI_TRC
      • u4.43.06: Operator DEFI_COMPOR
      • u4.43.07: Operator CALC_MATE_HOMO
      • u4.44.01: Operators AFFE_CHAR_MECA, AFFE_CHAR_MECA_C, and AFFE_CHAR_MECA_F
      • u4.44.02: Operators AFFE_CHAR_THER and AFFE_CHAR_THER_F
      • u4.44.03: Operators AFFE_CHAR_CINE and AFFE_CHAR_CINE_F
      • u4.44.04: Operator AFFE_CHAR_ACOU
      • u4.44.11: Operator DEFI_CONTACT
      • u4.44.12: Operator CREA_RESU
      • u4.44.21: Operator DEFI_OBSTACLE
      • u4.44.31: Operator DEFI_SPEC_TURB
      • u4.50.01: Keyword SOLVEUR
      • u4.51.01: Operator MECA_STATIQUE
      • u4.51.02: Macro command MACRO_ELAS_MULT
      • u4.51.03: Operator STAT_NON_LINE
      • u4.51.04: Operator MECA_NON_LINE
      • u4.51.10: Operator CALCUL
      • u4.51.11: Nonlinear behaviors
      • u4.51.12: Macro command SIMU_POINT_MAT
      • u4.51.21: Macro-command CALC_STABILITE
      • u4.52.01: Operator INFO_MODE
      • u4.52.02: Operator CALC_MODES
      • u4.52.05: Operator MODE_ITER_CYCL
      • u4.52.06: Operator MODE_NON_LINE
      • u4.52.11: Operator NORM_MODE
      • u4.52.12: Operator EXTR_MODE
      • u4.52.13: Operator CALC_AMOR_MODAL
      • u4.52.14: Operator MODE_STATIQUE
      • u4.52.15: Operator MAC_MODES
      • u4.52.16: Operator CALC_CORR_SSD
      • u4.52.51: Operator CALC_MODE_ROTATION
      • u4.53.01: Operator DYNA_NON_LINE
      • u4.53.03: Operator DYNA_VIBRA
      • u4.53.04: Operator DYNA_VISCO
      • u4.53.05: Operator DYNA_LINE
      • u4.53.22: Operator DYNA_ALEA_MODAL
      • u4.53.23: Operator DYNA_SPEC_MODAL
      • u4.53.31: Operator DYNA_ISS_VARI
      • u4.53.41: Operator CALC_ERC_DYN
      • u4.53.51: Operator CALC_TRANSFERT
      • u4.54.01: Operator THER_LINEAIRE
      • u4.54.02: Operator THER_NON_LINE
      • u4.54.03: Operator THER_NON_LINE_MO
      • u4.55.01: Operator FACTORISER
      • u4.55.02: Operator RESOUDRE
      • u4.55.03: Operator ELIM_LAGR
      • u4.61.01: Operator CALC_MATR_ELEM
      • u4.61.02: Operator CALC_VECT_ELEM
      • u4.61.03: Operator CALC_CHAR_CINE
      • u4.61.11: Operator NUME_DDL
      • u4.61.21: Macro-command ASSEMBLAGE
      • u4.61.22: Operator ASSE_MATRICE
      • u4.61.23: Operator ASSE_VECTEUR
      • u4.62.01: Operator MACR_ELEM_STAT
      • u4.62.02: Operator DEPL_INTERNE
      • u4.63.01: Operator CALC_CHAR_SEISME
      • u4.63.02: Operator PRE_SEISME_NONL
      • u4.63.03: Macro-command DEFI_PRES_EC8
      • u4.63.11: Macro command PROJ_BASE
      • u4.63.12: Operator PROJ_MATR_BASE
      • u4.63.13: Operator PROJ_VECT_BASE
      • u4.63.14: Operator PROJ_SPEC_BASE
      • u4.63.22: Operator REST_SPEC_PHYS
      • u4.63.31: Operator REST_GENE_PHYS
      • u4.63.32: Operator REST_SOUS_STRUC
      • u4.63.33: Operator REST_COND_TRAN
      • u4.63.34: Operator REST_SPEC_TEMP
      • u4.63.35: Operator REST_MODE_NONL
      • u4.63.36: Operator POST_GENE_PHYS
      • u4.64.01: Operator DEFI_INTERF_DYNA
      • u4.64.02: Operator DEFI_BASE_MODALE
      • u4.65.01: Operator MACR_ELEM_DYNA
      • u4.65.02: Operator DEFI_MODELE_GENE
      • u4.65.03: Operator NUME_DDL_GENE
      • u4.65.04: Operator ASSE_MATR_GENE
      • u4.65.05: Operator ASSE_VECT_GENE
      • u4.65.11: Operator CREA_ELEM_SSD
      • u4.65.12: Operator ASSE_ELEM_SSD
      • u4.66.01: Operator CALC_MATR_AJOU
      • u4.66.02: Operator CALC_FLUI_STRU
      • u4.66.03: Operator CALC_FORC_AJOU
      • u4.66.04: Operator CALC_CHAM_FLUI
      • u4.66.11: Macro-command MACRO_MATR_AJOU
      • u4.66.21: Operator MODI_BASE_MODALE
      • u4.67.01: Operator DEFI_BASE_REDUITE
      • u4.67.02: Operator DEFI_DOMAINE_REDUIT
      • u4.67.03: Operator REST_REDUIT_COMPLET
      • u4.71.00: Selecting one or more fields in a Data Structure RESULTAT
      • u4.71.02: Operator RECU_TABLE
      • u4.71.03: Operator RECU_GENE
      • u4.71.04: Operator EXTR_RESU
      • u4.71.05: Procedure EXTR_TABLE
      • u4.71.06: Command EXTR_CONCEPT
      • u4.72.01: Operator COMB_MATR_ASSE
      • u4.72.04: Operator CREA_CHAMP
      • u4.72.05: Operator PROJ_CHAMP
      • u4.72.06: Operator PROD_MATR_CHAM
      • u4.73.01: Operator PROJ_MESU_MODAL
      • u4.73.02: Macro-command MACR_RECAL
      • u4.74.01: Operator MODI_REPERE
      • u4.75.01: Macro-command CALC_THERMECA_MULT
      • u4.81.03: Operator CALC_CHAM_ELEM
      • u4.81.04: Operator CALC_CHAMP
      • u4.81.05: Operator POST_CHAMP
      • u4.81.06: Operator CALC_ERREUR
      • u4.81.07: Operator POST_ERREUR
      • u4.81.08: Operator POST_BEREMIN
      • u4.81.13: Operator MACR_LIGN_COUPE
      • u4.81.21: Operator POST_RELEVE_T
      • u4.81.22: Operator POST_ELEM
      • u4.81.23: Operator POST_COQUE
      • u4.81.24: Operator CALC_COUPURE
      • u4.81.41: Operator POST_BORDET
      • u4.81.42: Operator CALC_FERRAILLAGE
      • u4.81.43: Operator CALC_PRESSION
      • u4.81.44: Operator COMBINAISON_FERRAILLAGE
      • u4.81.45: Operator POST_COMBINAISON
      • u4.81.52: Operator POST_FM
      • u4.82.01: Operator DEFI_FOND_FISS
      • u4.82.03: Operator CALC_G
      • u4.82.04: Operator POST_RUPTURE
      • u4.82.05: Operator POST_K1_K2_K3
      • u4.82.06: Operator RECA_WEIBULL
      • u4.82.07: Operator POST_K_BETA
      • u4.82.08: Operator DEFI_FISS_XFEM
      • u4.82.09: Macro-command CALC_GP
      • u4.82.10: Operator CALC_G_XFEM
      • u4.82.11: Operator PROPA_FISS
      • u4.82.21: Operator POST_MAIL_XFEM
      • u4.82.22: Operator POST_CHAM_XFEM
      • u4.82.30: Operator POST_K_TRANS
      • u4.82.41: Operator POST_JMOD
      • u4.83.01: Operator POST_FATIGUE
      • u4.83.02: Operator CALC_FATIGUE
      • u4.83.11: Operator POST_RCCM
      • u4.83.31: Operator COMB_FOURIER
      • u4.84.01: Operator COMB_SISM_MODAL
      • u4.84.02: Operator POST_DYNA_MODA_T
      • u4.84.03: Operator POST_FATI_ALEA
      • u4.84.04: Operator POST_DYNA_ALEA
      • u4.84.05: Operator POST_USURE
      • u4.84.11: Operator POST_DECOLLEMENT
      • u4.84.21: Operator CALC_FORC_NONL
      • u4.84.31: Command DEFI_SOL_EQUI
      • u4.84.32: Command DEFI_CHAR_SOL
      • u4.84.44: Operator POST_LIQUEFACTION
      • u4.84.45: Macro-command POST_NEWMARK
      • u4.84.46: Macro-command POST_ROCHE
      • u4.84.47: Macro-command CALC_STAB_PENTE
      • u4.85.01: Operator CALC_META
      • u4.86.01: Procedure POST_ENDO_FISS
      • u4.86.02: Macro-command POST_CZM_FISS
      • u4.90.01: Macro-command CALC_ESSAI
      • u4.90.02: Macro-command MACRO_EXPANS
      • u4.90.03: Macro-command OBSERVATION
      • u4.90.11: Operator CALC_MAC3COEUR
      • u4.90.12: Operator POST_MAC3COEUR
      • u4.90.13: Macro-command PERM_MAC3COEUR
      • u4.90.21: Macro-command CALC_ESSAI_GEOMECA
      • u4.90.31: Command COMBINAISON_CHARGE
      • u4.91.01: Procedure IMPR_RESU in 'RESULTAT' and 'ASTER' formats
      • u4.91.02: Procedure IMPR_GENE
      • u4.91.03: Procedure IMPR_TABLE
      • u4.91.04: Procedure IMPR_CONCEPT
      • u4.91.11: Procedure IMPR_CO
      • u4.91.12: Procedure INFO_RESU
      • u4.91.21: Procedure IMPR_JEVEUX
      • u4.92.01: Procedure TEST_RESU
      • u4.92.02: Procedure TEST_FONCTION
      • u4.92.03: Procedure TEST_TABLE
      • u4.92.04: Procedure TEST_FICHIER
      • u4.92.06: Procedure TEST_COMPOR
      • u4.92.11: Procedure ENGENDRE_TEST
      • u4.mk.10: Operator DEFI_FONC_ELEC
    • u7
      • u7.00.01: Operator EXEC_LOGICIEL
      • u7.01.01: Procedure PRE_IDEAS
      • u7.01.11: Procedure PRE_GIBI
      • u7.01.31: Procedure PRE_GMSH
      • u7.02.01: Operator LIRE_RESU
      • u7.02.02: Operator LIRE_CHAMP
      • u7.02.03: Operator LIRE_TABLE
      • u7.02.11: Operator LIRE_PLEXUS
      • u7.02.32: Operator LIRE_IMPE_MISS
      • u7.02.33: Operator LIRE_FORC_MISS
      • u7.02.34: Command DEFI_SOL_MISS
      • u7.03.01: Macro-command MACR_ADAP_MAIL
      • u7.03.02: Macro-command MACR_INFO_MAIL
      • u7.03.03: Python methods for controlling GMSH
      • u7.03.04: Macro-command CREA_LIB_MFRONT
      • u7.03.12: Operator CALC_MISS
      • u7.03.41: Procedure MACR_ECREVISSE
      • u7.03.51: Macro-command RAFF_XFEM
      • u7.03.71: U7.03.71 Macro-command RAFF_GP
      • u7.04.33: Procedure IMPR_MACR_ELEM
      • u7.04.51: Operator IMPR_OAR
      • u7.05.01: Procedure IMPR_RESU in 'IDEAS' format
      • u7.05.21: Procedure IMPR_RESU in 'MED' format
      • u7.05.32: Procedure IMPR_RESU in 'GMSH' format
    • lists
      • all documents
    • r0
      • r0.00.01: Guide to reading reference material
      • r0.00.02: External references published
    • r3
      • r3.01.00: The isoparametric finite element method
      • r3.01.01: Shape functions and finite element integration points
      • r3.03.01: Dualization of boundary conditions
      • r3.03.02: Solid body bond conditions
      • r3.03.03: 3D Connections — Beam, 2D — Beam
      • r3.03.04: External pressure forces during large movements
      • r3.03.05: Elimination of dualized boundary conditions
      • r3.03.06: Hull-girder connection
      • r3.03.07: Follower pressure for solid shell elements
      • r3.03.08: RBE3 linear kinematic relationships
      • r3.03.09: 3D Harlequin Connector — Beam
      • r3.06.02: Linear modeling of continuous medium elements in thermal
      • r3.06.03: Calculation of node stresses by local smoothing
      • r3.06.04: Fourier elements for axisymmetric structures
      • r3.06.07: Diagonalization of the thermal mass matrix
      • r3.06.08: Finite elements dealing with almost incompressibility
      • r3.06.09: Mechanical joint finite elements and hydromechanically coupled joint finite elements
      • r3.06.10: Quadrangular element at one integration point, stabilized by the "Assumed Strain" method
      • r3.06.11: Hexahedral element with one integration point, stabilized by the "Assumed Strain" method
      • r3.06.13: Mixed interface finite elements for cohesive zone models (xxx_ INTERFACE and xxx_ INTERFACE_S)
      • r3.06.14: Introduction to Hybrid High-Order Methods (HHO)
      • r3.07.02: Numerical modeling of thin structures: axisymmetric thermo-elasto-plastic shells
      • r3.07.03: Plate elements: models DKT, DST,, DKTG and Q4G
      • r3.07.04: Finite elements of solid shells
      • r3.07.05: Solid shell elements in geometric nonlinear
      • r3.07.06: Eccentricity treatment for plate elements DKT, DST,, DKQ, dsq, and q4g
      • r3.07.09: Plate elements: Q4GG modeling
      • r3.07.10: Finite elements of "solid" shells — COQUE_SOLIDE
      • r3.08.01: "Exact" beam elements
      • r3.08.02: Cable modeling
      • r3.08.03: Calculation of the characteristics of a beam of any cross section
      • r3.08.04: Beam element with 7 degrees of freedom to take warpage into account
      • r3.08.05: A finite cable-pulley element
      • r3.08.06: Finite elements of straight and curved pipes with ovalization, swelling and warping in elasto-plasticity
      • r3.08.07: Elements MEMBRANE and GRILLE_MEMBRANE
      • r3.08.08: Multi-fiber beam element (right) POU_D_EM
      • r3.08.09: Multi-fiber beams in large movements
      • r3.08.10: Item CABLE_GAINE
      • r3.11.01: Formulation of a thermal model for thin shells
    • r4
      • r4.01.01: Pre and post-treatment for thin shells made of composite materials
      • r4.01.02: Anisotropic elasticity
      • r4.02.01: Finite elements in acoustics
      • r4.02.02: Elements for coupling fluid-linear structure interaction with inert fluid
      • r4.02.03: Elasto-acoustic beam
      • r4.02.04: Fluid Coupling - Structure with Free Surface
      • r4.02.05: Absorbing border elements
      • r4.03.05: Parametric and non-parametric probabilistic models in dynamics
      • r4.03.06: Recalibration algorithms
      • r4.04.01: Models of metallurgical behavior of steels
      • r4.04.02: Elasto (visco) plastic modeling taking into account metallurgical transformations
      • r4.04.03: Law of elasto (visco) plastic behavior in large deformations with metallurgical transformations
      • r4.04.04: Models of metallurgical behavior of zircaloy
      • r4.04.05: Elasto-viscous behavior model META_LEMA_ANI with metallurgy taken into account for fuel rod sheath tubes
      • r4.05.01: Seismic response by transient analysis
      • r4.05.02: Stochastic approach for seismic analysis
      • r4.05.03: Seismic response by spectral method
      • r4.05.04: Soil-structure interaction with spatial variability (operator DYNA_ISS_VARI)
      • r4.05.05: Seismic signal generation
      • r4.05.06: Equivalent linear method for the propagation of 1D waves
      • r4.05.07: Nonlinear soil-structure interaction with the Laplace-Temps method
      • r4.05.08: Method for taking into account the Floor-Material interaction
      • r4.06.02: Modal calculation by classical dynamic substructuring
      • r4.06.03: Cyclic dynamic substructuring
      • r4.07.02: Modeling of turbulent excitations
      • r4.07.03: Mass matrix calculation added on a modal basis
      • r4.07.04: Fluid-structure coupling for tubular structures and coaxial shells
      • r4.07.05: Homogenization of a network of beams immersed in a fluid
      • r4.07.07: Identifying efforts on a modal model
      • r4.08.01: Calculation of thermal deformation
      • r4.09.01: Thermo-mechanical energy balance
      • r4.10.01: ZHU - ZIENKIEWICZ error estimator
      • r4.10.02: Residual error estimator
      • r4.10.03: Residual spatial error indicator for transient thermal
      • r4.10.04: Detecting singularities and calculating an element size map
      • r4.10.05: Residual error indicator for HM models
      • r4.10.06: Error estimators in quantities of interest
      • r4.10.07: Calculation of the error in relation to behavior in dynamics under a frequency formulation
      • r4.20.01: Indicators of discharge and loss of proportionality of elastoplasticity loading
    • r5
      • r5.01.01: Modal solvers and generalized problem solving (GEP)
      • r5.01.02: Solving the modal problem
      • r5.01.03: Modal parameters and the norm of eigenvectors
      • r5.01.04: Procedure for counting eigenvalues
      • r5.02.01: Transient linear thermal algorithm
      • r5.02.02: Nonlinear thermal
      • r5.02.04: Nonlinear thermal in moving coordinate system
      • r5.03.01: Quasi-static nonlinear algorithm (STAT_NON_LINE)
      • r5.03.02: Integration of Von Mises elasto-plastic behavior relationships
      • r5.03.03: Taking into account the hypothesis of plane constraints in nonlinear behaviors
      • r5.03.04: Chaboche elasto-visco-plastic behavior relationships
      • r5.03.05: Taheri viscoplastic behavior relationship
      • r5.03.06: Rousselier model in large deformations
      • r5.03.07: Rousselier model for ductile fracture
      • r5.03.08: Integration of viscoelastoplastic behavior relationships in nonlinear mechanical operators
      • r5.03.09: 1D nonlinear behavioral relationships
      • r5.03.11: Mono and polycrystalline elastoviscoplastic behaviors
      • r5.03.12: Viscoplastic behavior with memory effect and Chaboche restoration
      • r5.03.13: Viscoplastic behavior with damage to HAYHURST
      • r5.03.14: Implicit and explicit integration of nonlinear behavioral relationships
      • r5.03.15: Viscoplastic behavior with damage to CHABOCHE
      • r5.03.16: Relationship of elastoplastic behavior to linear and isotropic nonlinear kinematic work hardening. 3D modeling and plane constraints.
      • r5.03.17: Discrete element behavior relationships
      • r5.03.19: Hyperelastic and visco-hyper-elastic laws of behavior: almost incompressible material
      • r5.03.20: Nonlinear elastic behavior relationship under large displacements
      • r5.03.21: Elasto (visco) plastic modeling with isotropic work hardening in large deformations
      • r5.03.22: Law of behavior in large rotations and small deformations
      • r5.03.23: Elasto-plastic behavior under metal irradiation: application to tank internals
      • r5.03.24: Large deformation model GDEF_LOG
      • r5.03.25: Regularized damage law ENDO_SCALAIRE
      • r5.03.26: Quadratic regularized damage law ENDO_CARRE
      • r5.03.27: Mechanical behaviors for numerical simulations
      • r5.03.28: Gradient damage law ENDO_FISS_EXP
      • r5.03.29: Ductile plastic and viscoplastic damage behavior laws GTN and VISC_GTN
      • r5.03.31: Law of Behaviour FONDATION
      • r5.03.32: Assembly behavior law ASSE_CORN
      • r5.03.33: Laws of plastic and viscoplastic behavior with nonlinear isotropic work hardening VMIS_ISOT_NL and VISC_ISOT_NL
      • r5.03.34: Law of viscoelastic behavior REGU_VISC_ELAS
      • r5.03.35: Integration of Maxwell's viscoelastic behavior relationship (VISC_MAXWELL and VISC_MAXWELL_MT)
      • r5.03.36: Behavioral law KICHENIN_NL combining elastoplasticity and nonlinear viscoelasticity
      • r5.03.37: Homogenization of periodic heterogeneous structures
      • r5.03.40: Static and dynamic modeling of beams in large rotations
      • r5.03.50: Discreet formulation of contact friction
      • r5.03.52: Contact elements derived from a continuous hybrid formulation
      • r5.03.54: Contact in small slips with X- FEM
      • r5.03.55: Method LAC — Local Average Contact
      • r5.03.80: Load control methods
      • r5.03.81: Method IMPLEX
      • r5.04.01: Non-local modeling with gradients of internal variables GRAD_VARI
      • r5.04.03: Second gradient modeling
      • r5.04.04: Nonlocal modeling with nodal damage gradients GVNO
      • r5.05.01: Solving a second-order differential equation by the NIGAM method
      • r5.05.02: Algorithms for directly integrating the DYNA_VIBRA/BASE_CALCUL operator =' PHYS '
      • r5.05.03: Harmonic response
      • r5.05.04: Modeling of damping in linear dynamics
      • r5.05.05: Dynamic nonlinear algorithm
      • r5.05.07: Gyroscopic matrices of straight beams and disks
      • r5.05.08: Modeling of cracked rotors by equivalent stiffness as a function of the angle of rotation
      • r5.05.09: Calculation of reconstituted signals and the transfer function matrix
      • r5.05.10: Dynamic analysis of structures with viscoelastic materials having frequency dependent properties
      • r5.06.01: Model reduction in linear and non-linear dynamics: RITZ method
      • r5.06.03: Shock and friction modeling in transient analysis by modal recombination
      • r5.06.04: Algorithms for the time integration of the operator DYNA_VIBRA/BASE_CALCUL =' GENE '
      • r5.07.01: Calculating nonlinear modes with operator MODE_NON_LINE
    • r6
      • r6.01.02: Overview of the conjugate gradient: GCPC Aster and the use of PETSc
      • r6.02.01: About decomposition methods like GAUSS
      • r6.02.02: Linear solver using the multifrontal method MULT_FRONT
      • r6.02.03: Overview of direct linear solvers and the use of MUMPS
      • r6.03.01: Resolution of non-regular systems by a method of decomposition into singular values
    • r7
      • r7.01.01: Behavioral relationships BETON_GRANGER and BETON_GRANGER_V for clean concrete creep
      • r7.01.02: Prestress cable modeling
      • r7.01.03: Behavioral law BETON_DOUBLE_DP with Drücker-Prager double criteria for concrete cracking and compression
      • r7.01.04: Behaviour Law ENDO_ISOT_BETON
      • r7.01.06: Behavioral relationship BETON_UMLV for concrete creep
      • r7.01.08: MAZARS damage model
      • r7.01.09: Law of Behaviour ENDO_ORTH_BETON
      • r7.01.10: Modelings THHM. General information and algorithms
      • r7.01.11: Behavior models THHM
      • r7.01.12: Modeling thermohydration, drying and shrinkage of concrete
      • r7.01.13: Law CJS in geomechanics
      • r7.01.14: Law of Behaviour CAM_CLAY
      • r7.01.15: Behaviour law of LAIGLE
      • r7.01.16: Integration of elasto-plastic mechanical behaviors of Drucker-Prager, associated (DRUCK_PRAGER) and non-associated (DRUCK_PRAG_N_A) and post-treatments
      • r7.01.17: Barcelona model
      • r7.01.18: Behaviour law of HOEK_BROWN amended
      • r7.01.19: Modeling the creep/plasticity coupling for concrete
      • r7.01.20: Behaviour of steel subject to corrosion
      • r7.01.21: Behavioral law (in 2D) for the steel-concrete bond: JOINT_BA
      • r7.01.22: Law of viscoplastic behavior VISC_DRUC_PRAG
      • r7.01.23: Cyclic behavior law of HUJEUX for soils
      • r7.01.24: Law of viscoplastic behavior LETK
      • r7.01.25: Behaviour laws of dam joints:
      • r7.01.26: Behavioral relationship BETON_RAG
      • r7.01.27: Law of Behaviour BETON_REGLE_PR
      • r7.01.28: Mohr-Coulomb's law
      • r7.01.29: Law of Behaviour ENDO_HETEROGENE
      • r7.01.31: Behaviour law of reinforced concrete plates GLRC_DAMAGE
      • r7.01.32: Behaviour law of reinforced concrete plates GLRC_DM
      • r7.01.33: Elasto-plasticity-damage coupling
      • r7.01.34: SUSHI finite volume diagrams for modeling miscible unsaturated flows
      • r7.01.35: Behavioral relationship BETON_BURGER for concrete creep
      • r7.01.37: Dissipative Homogenised Reinforced Concrete (DHRC) constitutive model devoted to reinforced concrete plates
      • r7.01.38: Iwan's law for the cyclic behavior of granular materials
      • r7.01.39: Rankine's law
      • r7.01.40: Behavior model LKR
      • r7.01.41: Law of behavior of porous media: InflaLas
      • r7.01.42: Homogeneous damage law ENDO_LOCA_EXP
      • r7.01.43: Elastoplastic law with smoothed Mohr-Coulomb criterion
      • r7.01.44: Behavior Model CSSM
      • r7.01.45: Law of Behaviour RGI_BETON_BA
      • r7.01.46: Elasto-visco-plastic law NLH_CSRM for geomaterials
      • r7.01.47: Damaging law ENDO_LOCA_TC
      • r7.01.48: Behavior Model MCC
      • r7.02.01: Rate of energy release in linear thermoelasticity
      • r7.02.03: Rate of energy restoration in non-linear thermoelasticity
      • r7.02.04: Beremin model
      • r7.02.05: Calculation of stress intensity factors in linear thermoelasticity
      • r7.02.06: Bordet and Rice and Tracey models
      • r7.02.08: Calculation of stress intensity factors by extrapolation of the displacement field
      • r7.02.09: Weibull model identification
      • r7.02.10: Simplified defect toxicity analysis using the K-beta method
      • r7.02.11: Cohesive behavior laws: CZM_xxx_xxxet load control
      • r7.02.12: eXtended Finite Element Method: General
      • r7.02.13: Crack propagation algorithms with X- FEM
      • r7.02.14: Internal discontinuity elements, behavior CZM_EXPet load control
      • r7.02.15: Modelling cracks with hydro-mechanical coupling in saturated porous media
      • r7.02.16: Gp method: an energetic approach to the prediction of cleavage
      • r7.02.17: Determination of an equivalent crack from a damage field
      • r7.02.18: Hydromechanical element coupled with XFEM
      • r7.02.19: Cohesive elements with X- FEM
      • r7.02.20: Computation of T-stress by extrapolation of displacement field
      • r7.02.21: Law of cohesive behavior
      • r7.02.22: Calculation of modified J-integral in presence of initial state
      • r7.04.01: Estimation of lifespan in fatigue with a large number of cycles and in oligocyclic fatigue
      • r7.04.02: Estimation of fatigue under random stress
      • r7.04.03: Post-treatment according to RCC -M
      • r7.04.04: Multi-axial fatigue initiation criteria
      • r7.04.05: Algorithm for calculating reinforcement densities
      • r7.04.06: Automated tie rod method for the calculation of reinforcement
      • r7.04.10: Wear calculation operator
      • r7.05.01: Mechanical stability criteria
      • r7.05.02: Static stability analysis of embankment slopes
      • r7.07.01: Limit load calculation using the Norton-Hoff-Friaâ method, behavior NORTON_HOFF
      • r7.10.01: Analysis of random responses
      • r7.10.02: Post-processing of modal calculations with shock
      • r7.10.03: Post-processing of tree line calculations: Campbell diagram
      • r7.10.04: Post-treatment using the Roche method
      • r7.20.01: Projecting a field onto a mesh
      • r7.20.02: Extrapolation of measurements on a numerical model in dynamics
    • lists
      • all testcases by name
      • verification testcases by name
      • validation testcases by name
      • all documents
    • v0
      • v0.00.000: Validation documentation ranking
      • v0.01.001: MODEL01 - Test case title (Validation document template)
      • v0.01.002: MODEL02 - Test case title (Template for a brief validation document)
    • v1
      • v1.01.100: ZZZZ100 — Functions, sheets, formulas
      • v1.01.101: ZZZZ101 - Validation of operators AFFE_CARA_ELEM and POST_ELEM
      • v1.01.102: ZZZZ102 - Read accelerogram and oscillator spectrum
      • v1.01.103: ZZZZ103 — Unit tests of basic functions of the Jeveux memory manager
      • v1.01.104: ZZZZ104 — Validation of command variables into split orders with macro elements
      • v1.01.105: ZZZZ105 — Computer validation of the VISC_ENDO_LEMA law
      • v1.01.106: ZZZZ106 - Geometric criteria in DEFI_GROUP
      • v1.01.107: RCCM01 - Operator POST_RCCM
      • v1.01.108: ZZZZ108 - Code_Aster- MISS3D interface test
      • v1.01.109: ZZZZ109 — Basic check of 'matr_asse. EXTR_MATR '
      • v1.01.110: ZZZZ110 - Validation of the PROJ_CHAMP/ELEM order (in 2D and wireframe)
      • v1.01.111: ZZZZ111 - Validating the DEFI_CABLE_BP operator
      • v1.01.112: ZZZZ112 - Variable pressure cylinder. Validation of LIRE_PLEXUS
      • v1.01.113: ZZZZ113 — Projection of boundary conditions onto natural modes
      • v1.01.114: ZZZZ114 — Validating the printing and proofreading of PENTA18 in the MED format
      • v1.01.115: ZZZZ115 - Order validation CALC_COUPURE
      • v1.01.116: ZZZZ116 — Validating the calculation of the theta field in CALC_G
      • v1.01.117: ZZZZ314 — Validating the object calculation. BASLOC for nicks
      • v1.01.119: ZZZZ119 - PROJ_CHAMP for 3D surfaces
      • v1.01.121: ZZZZ121 - Adapting mesh with HOMARD
      • v1.01.122: ZZZZ122 — Validation of the calculation of deformations due to control variables
      • v1.01.123: ZZZZ123 - Checking the material properties of BETON_GLRC/CODIFICATION =' EC2 '
      • v1.01.124: ZZZZ124 - Checking the change of reference of EFGE_ELNO and SIEF_ELNO.
      • v1.01.125: ZZZZ125 - POST_FM computer validation
      • v1.01.126: ZZZZ126 - Order validation CREA_CHAMP OPERATION: 'ASSE'
      • v1.01.127: ZZZZ127 - Validating the LIAISON_MAIL keyword
      • v1.01.128: ZZZZ128 - Validation of LIRE_TABLE and IMPR_TABLE orders
      • v1.01.129: ZZZZ129 — Order validation CREA_RESU keyword factor PROL_RTZ
      • v1.01.130: ZZZZ130 - Order validation CREA_CHAMP/OPERATION = 'EVAL'/'DISC'
      • v1.01.131: ZZZZ131 - Order validation CREA_RESU keyword factor PERM_CHAM
      • v1.01.132: ZZZZ132 — Validation of non-regression of reading MED data
      • v1.01.133: ZZZZ133 — Validation of the correct consideration of control variables in elasticity
      • v1.01.134: ZZZZ134 — Calculation and extraction of the discharge matrix
      • v1.01.135: ZZZZ135 - Computer validation of SRM methods in the macro command CALC_STAB_PENTE
      • v1.01.136: ZZZZ136 - POST_RELEVE_T validation
      • v1.01.137: ZZZZ137 - Operators AFFE_CHAR_MECA and AFFE_CHAR_THER: validating keywords EVOL_CHAR, PRES_REP, FORCE_CONTOUR
      • v1.01.138: ZZZZ138 — Validating the mesh partitioner
      • v1.01.139: MESH001 — Python API check for the mesh object
      • v1.01.140: MESH002 — Mesh partitioner check
      • v1.01.141: MESH003 — ConnectionMesh mesh check
      • v1.01.142: ZZZZ142 — Computer validation of the calculation of potential energy
      • v1.01.143: ZZZZ143 — Computational validation of the equivalence between stationary and conditional transient calculations.
      • v1.01.144: ZZZZ144 - Validation of LIAISON_SOLIDE and LIAISON_RBE3
      • v1.01.145: ZZZZ145 — Validation of the RIGI_PARASOL keyword from the AFFE_CARA_ELEM command
      • v1.01.146: ZZZZ146 - Computer validation of LEM methods in the macro command CALC_STAB_PENTE
      • v1.01.147: ZZZZ147 — Validation of the operation of POST_COMBINAISON on simple geometry
      • v1.01.150: ZZZZ150 - Validating the IMPR_FONCTION operator
      • v1.01.151: ZZZZ151 — Validating the EXEC_LOGICIEL operator when calling mesh tools
      • v1.01.152: ZZZZ152 — feature validation in DYNA_NON_LINE
      • v1.01.153: ZZZZ153 — Validation of option AMOR_MECA in 3D calculation_ JOINT
      • v1.01.154: ZZZZ154 — Verification of "composite" types
      • v1.01.161: ZZZZ161 - Interchange in MED format, computer control
      • v1.01.162: ZZZZ162 — Validation of writing and reviewing fields in MED format
      • v1.01.163: ZZZZ163 — Validating the POST_BEREMIN macro command
      • v1.01.164: ZZZZ164 - Validation of the keywords DEFORME, TRANSLATION,,, ROTATION, MODI_BASE and ECHELLE of the order MODI_MAILLAGE
      • v1.01.165: ZZZZ165 - LIRE_RESU in 'IDEAS' format
      • v1.01.166: ZZZZ166 - Calculation of heat flow
      • v1.01.175: ZZZZ175 - Aster-Lobard coupling on an STAT_NON_LINE calculation
      • v1.01.176: ZZZZ176 — Validation of operators PRE_IDEAS, PRE_GMSH,, PRE_GIBI, LIRE_RESU and IMPR_RESU
      • v1.01.177: ZZZZ177 — Validating table operations
      • v1.01.178: ZZZZ178 - Validation of the thermo-mechanical chaining methodology in HPC
      • v1.01.180: ZZZZ180 - Analytical tests related to the generation of random signals with GENE_FONC_ALEA
      • v1.01.185: ZZZZ185 - Validation of the MODI_MAILLAGE command associated with SYMETRIE and the PROJ_CHAMP command associated with DISTANCE_MAX
      • v1.01.186: ZZZZ186 - Validating the IMPR_OAR operator
      • v1.01.189: ZZZZ189 — Circumferential orientation using a Python loop
      • v1.01.191: ZZZZ191 — Validation of the AFFE_CHAR_MECA and AFFE_CHAR_CINE operators in the case of an imposed move
      • v1.01.196: VOCAB01 — Fictional test to produce order catalog vocabulary
      • v1.01.205: ZZZZ205 — Calculating the kinetic energy of a rectangular plate
      • v1.01.206: ZZZZ206 - Operator CREA_MAILLAGE: validating the QUAD_LINE keyword
      • v1.01.208: ZZZZ208 — Validation of methods for extracting and retrieving generalized terms
      • v1.01.213: ZZZZ213 — Validating AFFE_CHAR_MECA/AFFE_CHAR_CINE operators with LDLT/MULT_FRONT/GCPC solvers
      • v1.01.215: ZZZZ215 — 3D code_saturne-code_aster chaining
      • v1.01.216: ZZZZ216 — Weak coupling 3D code_saturne-code_aster
      • v1.01.218: ZZZZ218 — Order validation MACR_ECREVISSE
      • v1.01.219: ZZZZ219 - AFFE_CHAR_MECA: validating the FACE_IMPO keyword
      • v1.01.221: ZZZZ221 — Validation of a thermo-hydradation chain calculation
      • v1.01.222: ZZZZ222 — Validating the AFFE_CHAR_CINE overload mechanism
      • v1.01.223: ZZZZ223 - Validation of CREA_RESU/ASSE and AFFE_MATERIAU/AFFE_VARC/FONC_INST
      • v1.01.224: ERREU01 - Test to emit error messages from the CALCUL and PRERES routines
      • v1.01.225: ERREU02 - Checking guardrails if command variables are missing
      • v1.01.226: PYNL01 - Integrating VMIS_ISOT_LINE behavior with the CALCUL command
      • v1.01.227: ZZZZ227 — Validating the creation of the reference temperature map
      • v1.01.228: ZZZZ228 — Validating the PREP_VARC option of the CREA_RESU operator
      • v1.01.229: ZZZZ229 - Order validation AFFE_CHAR_MECA/LIAISON_SOLIDE + TRAN + ANGL_NAUT
      • v1.01.230: ZZZZ230 — Implementation of "structural zoom" on a 2D problem
      • v1.01.231: ZZZZ231 — Contact validation in initial geometry
      • v1.01.233: ZZZZ233 — Validating the FRAGILITE keyword from the POST_DYNA_ALEA command
      • v1.01.234: ZZZZ234 - Test reference values for beams, bars, cables, discrete elements.
      • v1.01.235: PLEXU01 — Basic validation of the CALC_EUROPLEXUS order
      • v1.01.236: ZZZZ236 — Validating the RESTREINT keyword for the CREA_MAILLAGE operator
      • v1.01.237: ZZZZ237 — Basic validation of LIAISON_UNIL and TOLE_APPA
      • v1.01.238: ZZZZ238 - Normal movements imposed on curved faces of hexahedra at 20 and 27 knots and pentahedra at 18 knots
      • v1.01.239: ZZZZ239 - Validating the calculation of the non-symmetric matrix for the elements DKT
      • v1.01.240: ZZZZ240 — EXTR_RESU/RESTREINT validation
      • v1.01.241: ZZZZ241 — Validating the calculation of transfer functions
      • v1.01.248: PLEXU02 — Verification of the CALC_EUROPLEXUS order in multi-domain
      • v1.01.249: ZZZZ249 — POST_ELEM/INTEGRALE validation
      • v1.01.250: ZZZZ250 — Validation of ORIE_PEAU_2D/GROUP_MA_SURF and ORIE_PEAU_3D/GROUP_MA_VOLU
      • v1.01.253: ZZZZ253 — Mechanical nonlinear calculation with mesh change
      • v1.01.256: ZZZZ256 — Validating the combination of non-symmetric matrices
      • v1.01.257: ZZZZ257 - Quantity error estimator of interest for fracture mechanics
      • v1.01.258: ZZZZ258 - Validating the ETAT_INIT keyword from STAT_NON_LINE
      • v1.01.259: ZZZZ259 - Mesh adaptation and 2D border monitoring
      • v1.01.260: ERREU07 - Error messages when a behavior change is not allowed
      • v1.01.261: ZZZZ261 - Validating PROJ_CHAMP in 2D for node fields
      • v1.01.264: ZZZZ264 — Order validation POST_ENDO_FISS
      • v1.01.265: ZZZZ265 - Validating the DYNA_NON_LINE command in parallel
      • v1.01.266: ZZZZ266 - Validating the COOR_ELGA option from CALC_CHAM_ELEM
      • v1.01.268: ZZZZ268 - Validation of POST_BORDET in 2D and 3D
      • v1.01.269: PYNL02 - STAT_NON_LINE in exploded commands for an elasto-plastic calculation
      • v1.01.270: ZZZZ270 — Testing error messages from DEFI_MATERIAU
      • v1.01.271: ZZZZ271 - Validation of PROJ_CHAMP in 2D and 3D for fields at Gauss points
      • v1.01.274: ZZZZ274 - Validation for non-symmetric discretes
      • v1.01.275: DISTR01 — Parametric study example
      • v1.01.276: ERREU08 - Error message in case of interpenetration
      • v1.01.277: ERREU03 - Simple singularity detection in MECA_STATIQUE
      • v1.01.278: ERREU04 - Simple singularity detection in exploded commands
      • v1.01.279: ERREU05 - Checking the recovery of fatal errors in STAT_NON_LINE
      • v1.01.280: ERREU06 - Checking how NaN works in Code_Aster
      • v1.01.282: ZZZZ282 — Validation of the definition of a crack on a grid by DEFI_FISS_XFEM
      • v1.01.283: ZZZZ283 — Validation of the use of a grid with an X- FEM crack on a mesh refined by Homard
      • v1.01.284: ZZZZ284 - Validating options CHAR_MECA_HYDR_R and CHAR_MECA_SECH_R
      • v1.01.285: ZZZZ285 - Validation of PROJ_CHAMP/Collocation
      • v1.01.286: ZZZZ286 — Validation of the displacement imposed on an edge
      • v1.01.287: ZZZZ287 — Basic validation of the POST_RUPTURE operator
      • v1.01.289: ZZZZ289 - Validations of calculations of elementary matrices of incompressible elements
      • v1.01.291: ZZZZ291 — Validating the NORME keyword from POST_ELEM
      • v1.01.292: ZZZZ292 — Basic validation of SANS_GROUP_NO_FR
      • v1.01.293: ZZZZ293 — Validation of the position of the sub-points of multifibre beams
      • v1.01.294: ZZZZ294 — Validation of the position of the sub-points of the 3D plates
      • v1.01.295: ZZZZ295 — Validation of the position of the sub-points of 2D plates
      • v1.01.296: ZZZZ296 — Validating the position of pipe sub-points
      • v1.01.297: ZZZZ297 — Validation of the LIAISON_PROJ keyword from the AFFE_CHAR_MECA command
      • v1.01.298: ZZZZ298 — Computational validation of POST_K1_K2_K3
      • v1.01.299: ZZZZ299 - Checking local landmarks
      • v1.01.301: SUPV001 — Checking the operation of INCLUDE
      • v1.01.302: SUPV002 — Checking message catalogs
      • v1.01.303: ERREU09 — Validating exception handling
      • v1.01.304: ZZZZ304 — Projection of a field by discontinuous ELNO elements
      • v1.01.305: ZZZZ305 — DEFI_CABLE_BP validation
      • v1.01.306: ZZZZ306 — PROJ_CHAMP/ECLA_PG verification
      • v1.01.307: ZZZZ307 - Computer validation of the parallelism of elementary calculations and assemblies
      • v1.01.308: ERREU10 - Validation of the shutdown for instability in STAT_NON_LINE
      • v1.01.309: ZZZZ309 - Validating topological options ZONE_MAJ and TORE in DEFI_GROUP
      • v1.01.312: PLEXU03 — Validation of prestress cables in CALC_EUROPLEXUS
      • v1.01.313: ZZZZ313 — Numpy/lapack verification test
      • v1.01.314: ZZZZ314 — Computational validation of DEFI_FOND_FISS
      • v1.01.315: ZZZZ315 — Order validation PROD_MATR_CHAM (real matrix)
      • v1.01.316: SUPV003 - Supervisor test
      • v1.01.318: ZZZZ318 — Validating the SOUS_POINT method of the PROJ_CHAMP command
      • v1.01.319: ZZZZ319 — MACR_ADAP_MAIL computer validation
      • v1.01.320: PLEXU05 — Prestressed reinforced concrete plate under uniform pressure with the GLRC_DAMAGE law
      • v1.01.321: EFICA01 - Graphic recipe for the EFICAS tool
      • v1.01.322: ZZZZ322 —Validation of the proofreading in MED format of a field ELGA
      • v1.01.323: ZZZZ323 — Validation of the printing of local landmarks by IMPR_RESU/CONCEPT
      • v1.01.324: ERREU11 — Validation of the DECOUPE action
      • v1.01.325: ZZZZ325 — CALC_CHAMP/'SIRO_ELEM'
      • v1.01.326: ZZZZ326 — Validating the printing of sub-points in MED format
      • v1.01.328: ZZZZ328 — CALC_CHAMP/ENEL_ELEM validation
      • v1.01.329: ERREU12 — CONTACT_INIT validation with cutting
      • v1.01.330: ZZZZ330 — Validation of the calculation of potential energy for beam elements
      • v1.01.331: ZZZZ331 - Validation of the definition of shell/grid characteristics by space functions.
      • v1.01.332: ZZZZ332 - Crea_resu/evol_varc validation
      • v1.01.333: ZZZZ333 — MODI_REPERE validation
      • v1.01.334: ERREU13 — VERI_BORNE validation
      • v1.01.335: ERREU14 - Test to emit error messages for command variables
      • v1.01.336: ZZZZ336 — Validation of the consideration of command variables at the sub-points
      • v1.01.337: ZZZZ337 —
      • v1.01.338: ZZZZ338 - Validation of the frequency band balancing algorithm
      • v1.01.339: ZZZZ339 - Validation of the G calculation with initial constraints in 3D
      • v1.01.340: ZZZZ340 — Validating the TEMP_CONTINUE keyword for AFFE_CHAR_THER
      • v1.01.341: ZZZZ341 - Validation of the dependent pressure as a function of space
      • v1.01.342: ZZZZ342 - Validation of ELAS_HYPER in small disturbances
      • v1.01.343: SUPV004 - Running Python unit tests
      • v1.01.344: ZZZZ344 — Validating the calculation of angular deviations in DEFI_CABLE_BP
      • v1.01.345: ZZZZ345 - Validation of the use of simple Lagrange
      • v1.01.346: ZZZZ346 — Bifurcation of a straight XFEM interface with quadratic 2D elements
      • v1.01.347: ZZZZ347 — Validation of friction cables CABLE_GAINE
      • v1.01.348: ZZZZ348 — Coupling Code-Aster commands and the Python time-integration solver used in the LEGOS tool
      • v1.01.349: ZZZZ349 - Validating ELGA and ELNO fields on COQUE_3D elements
      • v1.01.350: ZZZZ350 — Validating DIST_ESCL/DIST_MAIT keywords with a function of time
      • v1.01.351: ZZZZ351 — Order validation ELIM_LAGR
      • v1.01.352: ZZZZ352 — Validating the SOLVEUR/ELIM_LAGR keyword = 'OUI'
      • v1.01.353: ZZZZ353 - Validation of Code_Aster operators for the Salome-Meca forced pipe calculation plugin
      • v1.01.356: ZZZZ356 - Order validation RAFF_GP
      • v1.01.357: ASRUN01 - Validating the mesh converter
      • v1.01.358: ZZZZ358 — Validating the MODELE_THER keyword for the MODI_MODELE_XFEM operator
      • v1.01.359: ZZZZ359 — Validating the macro command POST_CZM_FISS/OPTION = 'TRIAXIALITE'
      • v1.01.360: ZZZZ360 - Order validation MODI_MAILLAGE/ABSC_CURV
      • v1.01.361: ZZZZ361 - Degenerate cutting cases for XFEM quadratic 3D elements
      • v1.01.362: ZZZZ362 - Checking the consistency of the fields produced by the X- FEM sub-division
      • v1.01.363: ZZZZ363 — Dynamic damage to a specimen notched in AXIS
      • v1.01.364: ZZZZ364 - Validation of large rotations
      • v1.01.365: ZZZZ365 - Validation of the transformation from a SIEF_R (3D) to a SIEF_R (DKT)
      • v1.01.366: ZZZZ366 - IMPR_RESU and LIRE_RESU validation test
      • v1.01.367: ZZZZ367 - Validating the POST_INCR keyword from COMPORTEMENT
      • v1.01.368: PLEXU08 - Validating new CALC_EUROPLEXUS features
      • v1.01.369: ZZZZ369 — Validation of option MASS_MECA for elements MEMBRANE and GRILLE_MEMBRANE
      • v1.01.370: PLEXU10 - Validation of slippery and rubbing cables in CALC_EUROPLEXUS
      • v1.01.372: PLEXU11 — Validation of the use of ground springs in CALC_EUROPLEXUS
      • v1.01.373: PLEXU07 — Transient response of a reinforced concrete slab: model GLRC_DAMAGE
      • v1.01.380: ZZZZ380 - Adding fictional degrees of freedom for multigrid solvers
      • v1.01.381: ZZZZ381 — Validation of concepts using the multifiber data structure
      • v1.01.382: ZZZZ382 - Validating CALC_CHAMP on beams with complex fields
      • v1.01.383: ZZZZ383 - Order validation CREA_MAILLAGE/DECOUPE_LAC
      • v1.01.384: ZZZZ384 — Validation of the MASS_REP keyword from the AFFE_CARA_ELEM command
      • v1.01.385: ZZZZ385 — Validation of LIAISON_SOLIDE in 2D and with large rotations
      • v1.01.386: ZZZZ386 — Validation of LIAISON_SOLIDE in 3D and with large rotations
      • v1.01.387: ZZZZ387 - Validation of terminal management in the MFront interface
      • v1.01.388: ZZZZ388 - Validating the selective projection to the nodes of an internal variables field
      • v1.01.389: ZZZZ389 - Validating the rereading of a surface force field in LIRE_RESU
      • v1.01.391: PLEXU09 — Validating VMIS_JOHN_COOK in CALC_EUROPLEXUS
      • v1.01.392: ZZZZ392 — Validation of the mode_meca concept from CREA_RESU for COMB_SISM_MODAL/MODE_CORR
      • v1.01.393: ZZZZ393 - Pre-deformations by function for plates, grids and membranes
      • v1.01.394: ZZZZ394 — PRE_EPSI check
      • v1.01.395: ZZZZ395 - Checking model reduction operators
      • v1.01.396: ZZZZ396 — Checking the fit of quadratic level sets for segment cracks
      • v1.01.398: ZZZZ398 - Checking the dependence of MFront on geometry
      • v1.01.399: ZZZZ399 — Frequencies of a one-dimensional quantum harmonic oscillator
      • v1.01.400: ZZZZ400 - Validating the rereading of an internal variables field with multiple behaviors in LIRE_RESU in the MED format
      • v1.01.401: ZZZZ401 — Checking renumbering tools for direct linear solvers
      • v1.01.402: ZZZZ402 - Validating the use of POST_NEWMARK
      • v1.01.403: ZZZZ403 - Validation of the use of POST_LIQUEFACTION on a 2D dam case
      • v1.01.404: PLEXU13 — Validation of sending a dynamic initial state by CALC_EUROPLEXUS
      • v1.01.405: ZZZZ405 — Validation of the wear model
      • v1.01.406: ZZZZ406 - Validating the fusion of loads in the CALC_G operator
      • v1.01.407: ZZZZ407 — Validating MACR_CARA_POUTRE with TABLE_CARA =' OUI '
      • v1.01.409: ZZZZ409 - Validating the interface between code_aster and behavior laws in UMAT format
      • v1.01.410: PYNL03 — THER_NON_LINE in exploded orders
      • v1.01.411: ZZZZ411 - Calculating fields at nodes for structure elements
      • v1.01.412: ZZZZ412 - Validating the use of DEFI_SOL_EQUI
      • v1.01.413: ZZZZ413 — Validating the printing in MED format of subdot elements
      • v1.01.414: ZZZZ414 - Verification of the law of HUJEUX on a material point
      • v1.01.415: MODEL01 - Test case title (Validation document template)
      • v1.01.416: ZZZZ416 — COQUE_SOLIDE mesh modification test
      • v1.01.418: ZZZZ418 — Multilayer and multi-fiber elements: checking values at sub-points
      • v1.01.419: ZZZZ419 - Verification of LIAISON_MAIL with eccentric shells.
      • v1.01.420: ZZZZ420 — Basic dynamic damping test
      • v1.01.501: ZZZZ501 — Object deletion test
      • v1.01.502: ZZZZ502 — Checking Python extensions around loads
      • v1.01.503: ZZZZ503 — Checking Python extensions around matrices
      • v1.01.505: ZZZZ505 — Checking the API fields
      • v1.01.506: ZZZZ506 — MECA_NON_LINE check
      • v1.01.507: ZZZZ507 — Checking Python field methods
      • v1.01.508: ZZZZ508 — THER_LINEAIRE IT Audit
      • v1.01.509: ZZZZ509 — MECA_NON_LINE check
      • v1.01.511: ZZZZ511 — Basic test of the completeness of some GC features
      • v1.02.011: PERFE01 — Non-regression of the homogenized BZ calculation of the PERFECT platform
      • v1.02.013: PERFE03 — Non-regression of the aggregate-type calculation of the PERFECT platform
      • v1.02.101: SSEP001 - Calculation of the limit load of a tube with underthickness
      • v1.02.102: SSEP002 - Calculation of the limit load of an elbow with underthickness
      • v1.02.202: RTOOL01 — Releasing DDLs on the SMART model with the Rtool tool tool
      • v1.03.124: UMAT001 — Code_Aster-Umat interface test in linear thermo-elasticity
      • v1.03.125: UMAT002 — Code_Aster-Umat interface test in linear elasticity under multiaxial loading
      • v1.03.126: MFRON01 — Code_Aster- MFront interface test for elasto-visco-plastic laws
      • v1.03.127: MFRON02 - Code_Aster- MFront interface test: for concrete and soil behavior laws
      • v1.03.128: MFRON03 — Code_Aster- MFront interface test for crystal laws
      • v1.03.130: MFRON05 — Code_Aster- MFront interface test: for damaged laws
      • v1.03.132: MFRON06 — Testing the Code_Aster- MFront interface for laws with metallurgy for numerical welding simulation
      • v1.04.101: GCPC001 - Test tube CTJ25
      • v1.04.102: GCPC002 - 3D cracked prismatic specimen
      • v1.04.111: MUMPS01 - MUMPS solver validation
      • v1.04.112: MUMPS02 - Validating the MUMPS solver for a DPLAN_INCO_UPG model
      • v1.04.113: MUMPS03 - Validating the MUMPS solver for complex matrices
      • v1.04.115: MUMPS05 - Validating the MUMPS solver in parallel with a centralized matrix
      • v1.04.116: PETSC01 - Validation of the PETSc solver in 3D linear elasticity
      • v1.04.117: PETSC02 - Validating PETSc with the distribution of the assembled matrix
      • v1.04.118: PETSC03 - Validating the PETSc solver with a second level preconditioner
      • v1.04.119: PETSC04 - Validating the FIELDSPLIT preconditioner from PETSc
      • v1.04.120: PETSC05 — Using user solver with petsc4py
      • v1.04.417: PYNL04 — Validation of the CALCUL order with plate and shell elements
    • v2
      • v2.01.002: SDLD02 - Spring mass system with 8 degrees of freedom
      • v2.01.004: SDLD04 - Transient response of a mass-spring system subjected to imposed acceleration
      • v2.01.021: SDLD21 - Spring mass system with 8 degrees of freedom with viscous damper
      • v2.01.022: SDLD22 - Transient of a mass-spring system with 8 degrees of freedom with viscous damper
      • v2.01.023: SDLD23 - Mass and spring system under random excitation
      • v2.01.024: SDLD24 - System of two independent spring weights under forced harmonic stress
      • v2.01.025: SDLD25 - Spring mass system with proportional viscous damper (spectral response)
      • v2.01.027: SDLD27 - Spring mass system with 8 degrees of freedom with non-proportional viscous damper (modal analysis)
      • v2.01.029: SDLD29 - Transient spring mass with 8 degrees of freedom and non-proportional viscous damping
      • v2.01.030: SDLD30 - Spectral seismic response of a 2 mass and 3 multi-supported spring system
      • v2.01.031: SDLD31 - Elementary validation of time diagrams in dynamics
      • v2.01.032: SDLD32 - Elementary validation of the schema in HHT time
      • v2.01.033: SDLD33 - Spectral seismic response of a 2-mass system - 4 springs multi-supported by 2 uncorrelated support groups
      • v2.01.034: SDLD34 — Release with a simple mass/spring
      • v2.01.101: SDLD101 - Simple oscillator under random excitation
      • v2.01.102: SDLD102 - Transitional substructure: System 3 masses-4 springs
      • v2.01.104: SDLD104 - Extrapolation of local measurements on a complete (discrete) model
      • v2.01.105: SDLD105 - Transient response of a mass-spring system to a mono-support earthquake with static correction
      • v2.01.106: SDLD106 — Spring mass system with damping under harmonic oscillation
      • v2.01.107: SDLD107 - Minimization of an error-type energy functional in relation to behavior in structural dynamics
      • v2.01.109: SDLD109 — Calculation of spectra taking into account floor-material interaction
      • v2.01.110: SDLD110 —Stiff dynamic system with 2 degrees of freedom
      • v2.01.301: SDLD301 - Spectral seismic response of a 2 mass and 3 multi-supported spring system (correlated or decorrelated excitations)
      • v2.01.313: SDLD313 - Spring mass system with 2 degrees of freedom with hysteretic damping
      • v2.01.320: SDLD320 - Transient response of a free system of 3 masses and 2 springs under harmonic excitation
      • v2.01.321: SDLD321 - Transient dynamic response of a harmonic oscillator with variable damping
      • v2.01.325: SDLD325 - Transient dynamic response of a damped mass-spring system with 2 degrees of freedom
      • v2.01.400: SDLD400 — Star mass-spring system
      • v2.02.001: SDLL01 - Short beam on simple supports
      • v2.02.002: SDLL02 - Slender, freestanding, recessed beam, folded on itself
      • v2.02.003: SDLL03 - Recessed slender beam - embedded with different inertias
      • v2.02.004: SDLL04 - Slender beam on two supports, coupled to a mass-spring system
      • v2.02.005: SDLL05 - Slender beam on 2 supports
      • v2.02.006: SDLL06 - Transient response of a recessed freestanding pole
      • v2.02.007: SDLL07 - P further slender on two supports, subject to a moving load at a constant speed
      • v2.02.008: SDLL08 - Flat girder mesh (metal profiles)
      • v2.02.009: SDLL09 - Vibration of a slender beam of variable rectangular cross section (freestanding)
      • v2.02.010: SDLL10 - Beam with variable rectangular cross section (recessed and embedded)
      • v2.02.011: SDLL11 - Free-free thin circular ring
      • v2.02.012: SDLL12 - Thin circular ring embedded in 2 points
      • v2.02.013: SDLL13 - Thin circular ring suspended by an elastic tab
      • v2.02.014: SDLL14 - Vibration modes of a thin pipe elbow
      • v2.02.015: SDLL15 - Slender, free-embedded beam with eccentric mass or inertia
      • v2.02.016: SDLL16 - Free-free thin ring with a point mass
      • v2.02.017: SDLL17 - Large curved beam fixed on both ends
      • v2.02.023: SDLL23 - Free-embedded beam subject to an earthquake (spectral response)
      • v2.02.100: SDLL100 - Transient dynamic response of a girder under simple tension
      • v2.02.101: SDLL101 - Vibration of a beam with pre-stress
      • v2.02.102: SDLL102 - Gantry subject to electrodynamic forces
      • v2.02.104: SDLL104 - Primary and secondary structures subject to random excitation
      • v2.02.105: SDLL105 - Pipe subject to random fluid excitation sources
      • v2.02.106: SDLL106 - Beam subject to distributed random excitation
      • v2.02.107: SDLL107 - Transient calculation of a beam under random excitation
      • v2.02.108: SDLL108 - NEUBERT "Coffee table"
      • v2.02.110: SDLL110 - Long cantilever beam under fluid-elastic and turbulent excitations: ANL tests
      • v2.02.112: SDLL112 — Seismic analysis of a multi-supported beam (spectral response)
      • v2.02.113: SDLL113 - Transient dynamic substructuring: simple tension beam
      • v2.02.117: SDLL117 - Beam subjected to multiple zones of fluid-elastic and random transverse excitations
      • v2.02.118: SDLL118 - Beam subjected to axial fluid-elastic excitation
      • v2.02.119: SDLL119 - Beam bundle under axial fluid-elastic excitation
      • v2.02.123: SDLL123 - Frequency of a simplified shaft line with gyroscopy
      • v2.02.124: SDLL124 - Rotating beam with 3 disks subjected to gyroscopy
      • v2.02.125: SDLL125 - Rotating beam with 2 disks and 2 non-symmetric bearings subject to gyroscopy
      • v2.02.126: SDLL126 — Transient dynamic response of a beam with 3 disks, subject to the gyroscopic effect.
      • v2.02.127: SDLL127 - Shaft line with rotor with variable circular cross section
      • v2.02.128: SDLL128 - Shaft line with bearing characteristics depending on the speed of rotation
      • v2.02.129: SDLL129 - Beam with 3 disks and 2 bearings with variable characteristics depending on the speed of rotation
      • v2.02.130: SDLL130 - Seismic response of a reinforced concrete beam (rectangular section) with linear behavior
      • v2.02.132: SDLL132 - Specific modes of a structure made of multifibre beams
      • v2.02.133: SDLL133 - Calculation of prestressed natural modes of a bladed wheel
      • v2.02.137: SDLL137 — Structural modification of a beam
      • v2.02.140: SDLL140 — Calculation of the natural modes of a beam with 3 disks, subject to the gyroscopic effect.
      • v2.02.141: SDLL141 - Natural frequencies of a single beam, subject to the gyroscopic effect.
      • v2.02.144: SDLL144 — Speed transient of a rotating beam with a disk
      • v2.02.146: SDLL146 -Validation of "bar" elements in dynamics
      • v2.02.147: SDLL147 — Simple vertical beam mounted on a spring subject to an earthquake
      • v2.02.148: SDLL148 — definition of an analytical excitation spectrum on a beam and projection on a modal basis
      • v2.02.149: SDLL149 — Seismic calculation of pipe BM3 (test NRC)
      • v2.02.150: SDLL150 - Eigenmodes of an eccentric core beam
      • v2.02.151: SDLL151 - Eigenmodes of a recessed viscoelastic beam - free
      • v2.02.153: SDLL153 - Eigenmodes of a thin elastic pipe under different boundary conditions
      • v2.02.154: SDLL154 - Seismic response according to the simplified Roche method of a straight pipe with a constant cross section
      • v2.02.155: SDLL155 - Seismic response using the simplified Roche method of straight pipe with variable cross section
      • v2.02.156: SDLL156 - Seismic response according to the simplified Roche method of a tee
      • v2.02.158: SDLL158 — Validation of beam modal parameters
      • v2.02.302: SDLL302 — Beam subjected to the "El Centro" accelerogram at each end, one out of phase with respect to the other
      • v2.02.311: SDLL311 - Transient dynamic response of a girder under tension under imposed displacement
      • v2.02.400: SDLL400 - Vibrating beam with eccentric torsional center
      • v2.02.401: SDLL401 - Straight beam inclined at 20°, subjected to sinusoidal tensile and torsional forces
      • v2.02.403: SDLL403 - Vibrations of a rotating pendulum
      • v2.03.001: SDLS01 - Thin square plate, free or embedded at the edge
      • v2.03.002: SDLS02 - Thin diamond plate embedded at the edge
      • v2.03.003: SDLS03 - Thin rectangular plate simply pressed on the edges
      • v2.03.004: SDLS04 - Cyclic substructuration: Thin annular plate embedded in its hub
      • v2.03.007: SDLS07 - Eigenmodes of a thin spherical envelope
      • v2.03.008: SDLS08 - Eigenmodes of a square plate calculated on a reduced basis
      • v2.03.100: SDLS100 - Study of meshes on a thin square plate
      • v2.03.102: SDLS102 - Free vibrations of a compression blade
      • v2.03.103: SDLS103 - Coaxial shells under annular flow: inertial coupling between modes
      • v2.03.104: SDLS104 - Coaxial shells under annular flow
      • v2.03.105: SDLS105 - Flat plate subject to homogeneous turbulence
      • v2.03.106: SDLS106 - Modal calculation of a rectangular plate simply pressed on all its edges
      • v2.03.107: SDLS107 — Cylinder subject to axial annular flow turbulence
      • v2.03.109: SDLS109 - Natural frequencies of a thick cylindrical ring
      • v2.03.111: SDLS111 - Dynamic substructuring: triangular plate
      • v2.03.112: SDLS112 - Extrapolation of measurements on a 2D model (GARTEUR test)
      • v2.03.113: SDLS113 — Plate in plane deformation under harmonic pressure
      • v2.03.114: SDLS114 - Calculation of stress intensity factors for a cracked plate by modal recombination
      • v2.03.115: SDLS115 — Comparison with the analytical solution of a plate under tension
      • v2.03.116: SDLS116 — Plate under transient loading, processed in explicit dynamics
      • v2.03.118: SDLS118 - Response of a rigid circular foundation to variable seismic excitation in space
      • v2.03.119: SDLS119 - Support plate subject to Ricker acceleration (time-frequency method)
      • v2.03.120: SDLS120 — Cracked 2D plate subjected to a loading in Mode I. Validating the modal calculation with X- FEM
      • v2.03.122: SDLS122 - Modal analysis of a plate supported on its corners — Sub-structuring
      • v2.03.123: SDLS123 — Straight beam with Rayleigh damping (elastic behavior)
      • v2.03.124: SDLS124 — Eccentric plate flexed under dynamic loading
      • v2.03.127: SDLS127 - Harmonic response of a viscoelastic sandwich plate embedded on one edge
      • v2.03.129: SDLS129 - CALCUL MODAL D'UNE ETOILE A 3 BRANCHES
      • v2.03.130: SDLS130 — Natural frequency of a laminated composite plate composed of 8 plies
      • v2.03.139: SDLS139 - Identification of fluid forces on a wire structure
      • v2.03.200: SDLP200 — Comparison of the earthquake resistance of a homogeneous embankment between POST_NEWMARK and GeoSlope
      • v2.03.201: SDLP201 — Use of the CALM method for modeling the propagation of a compression wave in an elastic bar
      • v2.03.300: SDLS300 - Air cooler subject to ground excitation
      • v2.03.501: SDLS501 - Free vibrations of a corrugated sheet metal in its plane
      • v2.03.502: SDLS502 - "solid" square plate simply supported
      • v2.03.503: SDLS503 - Bending vibrations of a sandwich beam
      • v2.03.504: SDLS504 - Lateral buckling of a beam (overflow)
      • v2.03.505: SDLS505 - Buckling of a cylindrical shell under external pressure
      • v2.03.506: SDLS506 — Square plate in transient dynamics
      • v2.04.100: SDLV100 - Vibration of a slender beam of variable rectangular cross section (freestanding)
      • v2.04.101: SDLV101 —Beam in dynamic substructure
      • v2.04.102: SDLV102 —Lyre with IFS dynamically substructured
      • v2.04.103: SDLV103 —Lyre closed with IFS dynamically substructured
      • v2.04.104: SDLV104 - Fixed Developer Error DEFI_BASE_MODALE with the "ORTHO = OUI" option
      • v2.04.105: SDLV105 — Modal analysis of a main primary circuit with IFS
      • v2.04.111: SDLV111 - Homogenization of a network of beams in an incompressible fluid
      • v2.04.120: SDLV120 - Absorption of a compression wave in an elastic bar
      • v2.04.122: SDLV122 - Extrapolation of local measurements on a complete model (3D)
      • v2.04.123: SDLV123 - Calculation of elastodynamic G in an infinite medium for a plane crack of finite length
      • v2.04.124: SDLV124 — Volume pad subject to harmonic pressure
      • v2.04.126: SDLV126 — Modeling viscoelastic damping with RIGI_MECA_HYST
      • v2.04.128: SDLV128 - Modal expansion on a 3D cylindrical tube from extensiometric measurements
      • v2.04.129: SDLV129 - Vibratory fatigue from a fan blade
      • v2.04.130: SDLV130 - Cracked 3D plate subjected to a loading in Mode I. Validating the modal calculation with X- FEM
      • v2.04.131: SDLV131 - Simulation of a strain gauge using the OBSERVATION command
      • v2.04.132: SDLV132 - Taking into account, by sub-structuring, of a generalized mass in a modal tree-line calculation
      • v2.04.134: SDLV134 - Cyclic substructuring: Cantilever beam — presence of free knots on the axis
      • v2.04.301: SDLV301 — Cyclic substructuring: pump wheel
      • v2.04.302: SDLV302 — Modal analysis by substructuration: double-supported beam
      • v2.04.401: SDLV401 - Free-free full sphere
      • v2.04.402: SDLV402 - Dynamic substructuring: incompatible mesh and mode
      • v2.05.001: SDLX01 - Flexion of a symmetric gantry
      • v2.05.002: SDLX02 - Piping: Hovgaard problem. Spectral analysis
      • v2.05.003: SDLX03 - Assembly of thin rectangular plates with interlocking
      • v2.05.102: SDLX102 — Structure - ground - parametric structure interaction between two level buildings
      • v2.05.103: SDLX103 — Structure-soil-structure interaction between two buried buildings
      • v2.05.106: SDLX106 — Soil impedances under a rectangular foundation embedded in a homogeneous medium
      • v2.05.201: SDLX201 - Non-regression test: natural modes
      • v2.05.300: SDLX300 - Piping subjected to excitation during movement, speed, acceleration
      • v2.05.301: SDLX301 - Building with asymmetric floor-columns subjected to horizontal excitation
      • v2.05.302: SDLX302 - Embedded beam and concentrated mass subjected to a transverse random force
      • v2.05.400: SDLX400 — Articulated beam on elastic support
      • v2.06.100: SHLL100 - Harmonic response of a bar by dynamic substructuring
      • v2.06.101: SHLL101 - Right beam. Harmonic analysis
      • v2.06.102: SHLL102 — Harmonic response of a beam with 3 disks, subject to the gyroscopic effect.
      • v2.06.103: SHLL103 — Harmonic response of a rotor with two disks and two non-symmetric bearings, subject to the gyroscopic effect
      • v2.07.100: SHLV100 - Harmonic response of a hollow cylinder in plane deformations
      • v2.07.301: SHLV301 — Harmonic response by substructuration: double-supported beam
      • v2.08.011: FORMA11 - Practical work from the "Dynamic Analysis" training course: modal analysis
      • v2.08.012: FORMA12 — Practical work from the "introduction to linear & non-linear dynamic analysis" training course
      • v2.08.013: FORMA13 - Practical work from the "Dynamic Analysis" training course: dynamic substructuring
    • v3
      • v3.01.001: SSLL01 - Slender beam on 2 embedded supports
      • v3.01.002: SSLL02 - Shortened beam on two articulated supports
      • v3.01.003: SSLL03 - Slender beam on 3 supports
      • v3.01.004: SSLL04 - Spatial structure on elastic supports
      • v3.01.005: SSLL05 — bimetal: embedded beams connected by a dimensionally stable element
      • v3.01.006: SSLL06 - Thin arc embedded in plane bending
      • v3.01.007: SSLL0 7 - Thin arc embedded in out-of-plane bending
      • v3.01.008: SSLL08 - Thin bi-articulated arc in plane bending
      • v3.01.009: SSLL09 - System of 2 bars with 3 ball joints
      • v3.01.010: SSLL10 - Gantry with lateral links
      • v3.01.011: SSLL11 - Articulated bar truss under point load
      • v3.01.012: SSLL12 - Bar lattice under three stresses
      • v3.01.013: SSLL13 — Calculation of girder reinforcement
      • v3.01.014: SSLL14 - Flat gantry articulated at the foot
      • v3.01.015: SSLL15 - Beam on elastic ground, free ends
      • v3.01.016: SSLL16 - Beam on elastic ground, articulated ends
      • v3.01.017: SSLL17 - Undergirder
      • v3.01.100: SSLL100 - Symmetric structure of beams with a bend
      • v3.01.101: SSLL101 - Piping: HOVGAARD problem
      • v3.01.102: SSLL102 - Straight beam subjected to unitary forces
      • v3.01.103: SSLL103 - Elastic buckling of an angle iron
      • v3.01.104: SSLL104 - Pre-deformations in a straight beam
      • v3.01.105: SSLL105 - Elastic buckling of an L-structure
      • v3.01.106: SSLL106 - Straight pipe
      • v3.01.107: SSLL107 - MACR_CARA_POUTRE validation
      • v3.01.108: SSLL108 - 2D discrete elements
      • v3.01.109: SSLL109 - Balance in deformed configuration of a multi-fiber beam
      • v3.01.110: SSLL110 - System of 3 U-bars under own weight
      • v3.01.111: SSLL111 - Static response of a reinforced concrete beam (T-section) with linear behavior
      • v3.01.112: SSLL112 - Circular arch under uniform pressure
      • v3.01.116: SSLL116 - Reinforced 3D mesh
      • v3.01.117: SSLL117 — Validation of second gradient models
      • v3.01.118: SSLL118 — Embedded beam subject to movements defined in a local coordinate system
      • v3.01.119: SSLL119 — Beams subjected to distributed moments
      • v3.01.120: SSLL120 — Beams calculating internal forces at nodes: EFGE_ELNO
      • v3.01.400: SSLL400 - Beam of variable cross section, subject to ad hoc or distributed forces
      • v3.01.402: SSLL402 - Torque ring
      • v3.01.403: SSLL403 - Buckling of a beam under the effect of its own weight
      • v3.01.404: SSLL404 - Buckling an arch
      • v3.02.001: SSLP01 — Plate flexed and sheared in its plane
      • v3.02.002: SSLP02 — Simple traction of a perforated plate
      • v3.02.100: SSLP100 - Stock in static substructure
      • v3.02.101: SSLP101 - Rate of energy restoration under plane stresses
      • v3.02.102: SSLP102 - Energy return rate with initial thermal state
      • v3.02.103: SSLP103 - Calculation of the stress intensity coefficients KI and KII for a cracked circular plate in linear elasticity
      • v3.02.105: SSLP105 - Excavation of a circular tunnel in a linear elastic mass
      • v3.02.106: SSLP106 — Rectangular mass in pure flexure (test of sub-integrated QUAD4 elements)
      • v3.02.109: SSLP109 - Validating a feature in option DDL_STAB
      • v3.02.111: FORMA05 - Practical work from the "Fracture Mechanics" training course: Cracked plate in traction (SENT)
      • v3.02.112: FORMA06 - Practical work from the "Advanced use" training course: multi-cracked plate in traction
      • v3.02.113: SSLP113 — RBE3 relationships between a square and a discrete
      • v3.02.114: SSLP114 - Semi-infinite plane crack
      • v3.02.115: SSLP115 - Calculation of the energy release rate of a cracked disk in the presence of initial stresses
      • v3.02.116: SSLP116 — Square plate in bending — constant temperature gradient
      • v3.02.117: SSLP117 — Square plate in bending — variable temperature gradient
      • v3.02.119: SSLP119 — Calculation of the static safety factor of a homogeneous embankment with POST_NEWMARK
      • v3.02.200: SSLP200 - Linear Mechanics D_ PLAN
      • v3.02.201: SSLP201 - Linear Mechanics C_ PLAN
      • v3.02.300: SSLP300 — Rectangular cantilever plate
      • v3.02.301: SSLP301 — Trapezoidal plate under own weight
      • v3.02.303: SSLP303 - Cantilever plate loaded at the end
      • v3.02.304: SSLP304 - Orthotropic square plate in uniaxial traction outside the orthotropic axes
      • v3.02.305: SSLP305 - Thin disk supported under concentrated load
      • v3.02.311: SSLP311 - Oblique central crack in a finished rectangular plate, with two materials, subjected to uniform traction
      • v3.02.313: SSLP313 - Inclined crack in an unlimited plate, subject to infinitely uniform traction
      • v3.02.314: SSLP314 — Deviated crack at the interface between two elastic half-planes
      • v3.02.315: SSLP315 - Propagation of an emerging crack in a 2D perforated plate of width finished with XFEM
      • v3.02.316: SSLP316 - Error estimator on a cracked plate with X- FEM
      • v3.02.317: SSLP317 - Validation of the RAFF_XFEM macro-command on a multi-cracked plate
      • v3.02.318: SSLP318 - Propagation of a non-through X-FEM crack solicited in mode I
      • v3.02.319: SSLP319 - Propagation of two X-FEM through cracks stressed in mode I
      • v3.02.320: SSLP320 - Propagation of an X-FEM through crack solicited in Mode I
      • v3.02.321: SSLP321 - Propagation of an X- FEM crack in a 3-point flexure plate
      • v3.02.322: SSLP322 - Propagation of an X- FEM crack in a 3-point flexure plate with 3 holes
      • v3.02.323: SSLP323 - Propagation of a radial crack leading to a rotating disk
      • v3.02.326: FORMA01 - Practical work from the "Initiation" training course: modeling a perforated plate in linear elasticity and mesh adaptation
      • v3.03.004: SSLS04 — Z Section Beam
      • v3.03.007: SSLS07 - Thin cylinder under uniform axial load
      • v3.03.009: SSLS09 - Thin cylinder under own weight
      • v3.03.010: SSLS10 — Torus under uniform internal pressure
      • v3.03.011: SSLS11 - Combination of cases of static loads exerted on a plate
      • v3.03.012: SSLS12 - Combination of cases of static and seismic loads exerted on a plate
      • v3.03.013: SSLL13 - Combination of static and seismic load cases exerted on a finely meshed plate
      • v3.03.014: SSLS14 - Combination of static and seismic load cases exerted on the SMART model
      • v3.03.020: SSLS20 - Pinched cylindrical shell with free edges
      • v3.03.027: SSLS27 - Twisted or bent thin plate
      • v3.03.100: SSLS100 - Recessed circular plate subjected to uniform pressure
      • v3.03.101: SSLS101 - Circular plate placed under uniform pressure
      • v3.03.104: SSLS104 - Pinched cylindrical shell with diaphragm
      • v3.03.105: SSLS105 - Double pinched hemisphere
      • v3.03.106: SSLS106 - Pinched spherical shell with hole
      • v3.03.107: SSLS107 - Cylindrical panel subject to its own weight
      • v3.03.108: SSLS108 - Helical shell under concentrated loads
      • v3.03.110: SSLS110 - Stability of a compressed square plate
      • v3.03.111: SSLS111 - Single plate eccentricity
      • v3.03.112: SSLS112 - Excentricity of composite plates
      • v3.03.113: SSLS113 - Excentricity of homogenized plates
      • v3.03.114: SSLS114 - Non-regression on a quarter cylindrical shell
      • v3.03.115: SSLS115 - Composite square plate under uniform pressure
      • v3.03.116: SSLS116 - Membrane loading of an eccentric plate
      • v3.03.117: SSLS117 - Eccentricity of non-symmetric plates
      • v3.03.118: SSLS118 - Square plate placed under sinusoidal pressure
      • v3.03.119: SSLS119 - Recessed hook subjected to a sharp force at its end
      • v3.03.120: SSLS120 - Thin cylindrical shell under hydrostatic pressure
      • v3.03.121: SSLS121 - Laminated plate subjected to elementary loads
      • v3.03.122: SSLS122 - Eccentric rectangular isotropic homogeneous plate
      • v3.03.123: SSLS123 - Sphere under uniform external pressure
      • v3.03.125: SSLS125 - Buckling of a free cylinder under external pressure
      • v3.03.126: SSLS126 — Flexion of a reinforced concrete slab (model GLRC_DAMAGE) supported on two sides: elastic beam regime
      • v3.03.127: SSLS127 — Flexion of a reinforced concrete slab (model GLRC_DAMAGE) supported on 4 sides: elastic plate regime
      • v3.03.128: SSLS128 - Static calculation of a plate composed of layers
      • v3.03.129: SSLS129 — Sinusoidal corrugated plate subjected to linear loading forces
      • v3.03.130: SSLS130 - Structural zoom: perforated plate subjected to a normal force on one edge
      • v3.03.131: SSLS131 — Optimizing the radius of curvature of bent pipes
      • v3.03.132: SSLS132 — Reinforced concrete console plate under flexural load, in elasticity
      • v3.03.134: SSLS134 — Calculation of plate reinforcement
      • v3.03.135: SSLS135 - Reinforcement of a square tank using the Capra and Maury method
      • v3.03.136: SSLS136 — RBE3 relationships between a plate and a discrete
      • v3.03.137: SSLS137 - Prestressed concrete plate with an eccentric flexural cable
      • v3.03.138: SSLS138 — Membrane stress
      • v3.03.139: SSLS139 — Flexion of a plate with simplified representation of the reinforcements
      • v3.03.140: FORMA40 - Practical work - "Civil Engineering" training: study of a console plate subjected to gravity and bending
      • v3.03.141: SSLS141 — Flexion and Shear Plate
      • v3.03.143: SSLS143 - Cantilever girder with eccentric core
      • v3.03.144: SSLS144 - Internal pressure cylinder
      • v3.03.145: SSLS145 - Calculation of the reinforcement of a flat plate loaded in its plane
      • v3.03.146: SSLS146 - Calculation of reinforcement on a gantry
      • v3.03.147: SSLS147 - Shear a twisted ribbon
      • v3.03.200: SSLS200 - Linear mechanics: shell models
      • v3.03.311: SSLA311 — Circular crack subjected to an annular load
      • v3.03.502: SSLS502 - Orthotropic cylinder subject to a load line
      • v3.03.503: SSLS503 - Bending laminated plate with antisymmetric stacking simply supported
      • v3.03.504: SSLS504 - Composite square plate made up of 3 layers, subjected to doubly sinusoidal loading
      • v3.03.505: SSLS505 — Composite plate subject to mechanical deformations of purely thermal origin
      • v3.04.001: SSLV01 — Traction/compression of an oblique interface with CZM_ELAS_MIX behavior
      • v3.04.002: SSLV002 — Definition of local references for massive elements by an orientation field
      • v3.04.004: SSLV04 - Hollow cylinder with plane stresses
      • v3.04.007: SSLV07 - Stretching a parallelepiped under its own weight
      • v3.04.100: SSLV100 - Hollow cylinder in plane deformations
      • v3.04.104: SSLV104 - Rotating beam
      • v3.04.105: SSLV105 - Centrifugal stiffness of a rotating beam
      • v3.04.109: SSLV109 - Full cylinder with non-uniform pressure mode 1
      • v3.04.110: SSLV110 - Elliptical crack in an infinite medium
      • v3.04.111: SSLV111 - Error estimator on a perforated plate in linear elasticity
      • v3.04.113: SSLV113 - Error estimator on a bi-material hollow cylinder
      • v3.04.114: SSLV114 - 2D and 3D solid body movements
      • v3.04.115: SSLV115 - Concrete element prestressed under compression and gravity
      • v3.04.117: SSLV117 — Validation of the second expansion gradient modeling in 3D
      • v3.04.120: SSLV120 - Stretching an orthotropic parallelepiped under its own weight
      • v3.04.121: SSLV121 - Stretching a transverse isotropic parallelepiped under its own weight
      • v3.04.130: SSLV130 - Incompressible hollow cylinder
      • v3.04.131: SSLV131 - Orthotropy in any coordinate system
      • v3.04.134: SSLV134 - Circular crack in an infinite environment
      • v3.04.139: SSLV139 - Buckling of a circular plate subjected to a compression force uniformly distributed around its contour
      • v3.04.140: SSLV140 - Calculating effective modules using a Python method
      • v3.04.147: RCCM09 - Operator POST_RCCM: calculation of the boot factor
      • v3.04.148: SSLV146 — Solid cube reinforced by frames under triaxial loading
      • v3.04.153: SSLV153 - Error indicators — Volume meshes and functions
      • v3.04.154: SSLV154 — Circular crack in mixed mode
      • v3.04.155: SSLV155 — Lens crack under traction
      • v3.04.156: FORMA07 - Practical work from the "Advanced use" training: circular crack in an infinite environment
      • v3.04.157: SSLV157 — RBE3 relationships between a cube and a discrete
      • v3.04.159: SSLV159 - Cantilever girder subject to static boom loading
      • v3.04.160: SSLV160 - Two-supported beam subjected to a nodal force on its neutral fiber
      • v3.04.161: RCCM13 — Piping analysis with POST_RCCM in ZE200
      • v3.04.162: RCCM14 — Analysis with POST_RCCM in B3200: sharing groups, transition situations
      • v3.04.163: RCCM15 - Validation of POST_RCCM in B3600
      • v3.04.200: SSLV200 - 3D Linear Mechanics
      • v3.04.301: SSLV301 - Console cylindrical beam under linearly distributed load
      • v3.04.303: SSLV303 - Built-in cylinder under own weight and pressure
      • v3.04.304: SSLV304 — Cylinder under variable external pressure
      • v3.04.305: SSLV305 - Calculation of the pressure of a reservoir under earthquake according to Eurocode 8
      • v3.04.306: SSLV306 - 3D beam in imposed movements
      • v3.04.307: SSLV307 - Oblique cylinder under uniform axial load
      • v3.04.311: SSLV311 - Murakami 9.39. Crack in a quarter ellipse at the corner of a thick rotating disk
      • v3.04.312: SSLV312 — Semi-elliptical crack perpendicular to the interface of a bi-material
      • v3.04.314: SSLV314 - Plane propagation of an emerging crack with X- FEM
      • v3.04.315: SSLV315 — Non-planar propagation of an through crack with X- FEM
      • v3.04.316: SSLV316 — Propagation cracking imposed with X- FEM
      • v3.04.318: SSLV318 — Validation of the catalog of three-dimensional X- FEM cracks
      • v3.04.319: SSLV319 - Plane propagation of a semi-elliptical crack
      • v3.04.320: SSLV320 - Plane propagation of a 3D crack dividing and merging with X- FEM
      • v3.04.321: SSLV321 - Validation of XFEM preconditioning for a grazing interface
      • v3.05.100: SSLX100 - 3D mix - Shell - Bending beam
      • v3.05.101: SSLX101 - Straight pipe modelled in shells and beams
      • v3.05.102: SSLX102 - Bent bent pipe
      • v3.05.103: SSLX103 — Flexion of a 3D reinforced concrete beam with reinforcements modelled by bars
      • v3.05.104: SSLX104 - Discretes: expansion due to a temperature field
      • v3.05.200: SSLX200 — 3D connect_ POU: Simple traction and pure flexure of a free-standing embedded beam
      • v3.05.201: SSLX201 — Validating the 2D_ POU connection
      • v3.05.300: SSLX300 — Validation of the COMBINAISON_CHARGE macro-command for the combination of mechanical and thermal loads
      • v3.06.100: SSLA100 - Infinite cylinder subjected to a field of volume and surface forces
      • v3.06.103: SSLA103 - Calculation of desiccation shrinkage and endogenous shrinkage on a cylinder
      • v3.06.104: FORMA00 - Thin cylinder under hydrostatic pressure
      • v3.06.200: SSLA200 - Linear Mechanics in 2D AXIS
      • v3.06.310: SSLA310 — Radial crack in a bimaterial subjected to internal pressure
    • v4
      • v4.01.001: TPLA01 - Infinite hollow cylinder in thermal equilibrium
      • v4.01.004: TPLA04 - Power release in a hollow cylinder
      • v4.01.005: TPLA05 - Cylindrical bar with flow density
      • v4.01.006: TPLA06 - Cylindrical bar with convection
      • v4.01.007: TPLA07 - Orthotropic Hollow Cylinder
      • v4.01.300: TPLA300 - Circular plate subjected to a source of volume heat
      • v4.01.301: TPLA301 - Temperature distribution in a short cylinder
      • v4.02.001: TPLL01 - Infinite flat wall in linear thermal
      • v4.02.100: TPLL100 - Anisotropic flat wall in stationary thermal
      • v4.02.101: TPLL101 - Joule heating of a hollow cylinder
      • v4.03.100: TPLS100 - Infinite plate subject to antisymmetric flows
      • v4.03.101: TPLS101 - Infinite plate subjected to symmetric heat exchange with the outside
      • v4.03.102: TPLS102 — Thick beam under plane stresses — linear temperature variation along the width
      • v4.03.302: TPLS302 - Temperature distribution in a thin plate
      • v4.04.006: TPLV06 - Release of power in a hollow sphere
      • v4.04.007: TPLV07 - Orthotropic cube
      • v4.04.100: TPLV100 - Cylinder subject to non-axisymmetric boundary conditions
      • v4.04.101: TPLV101 - Stationary thermal with exchange condition between walls facing each other
      • v4.04.102: TPLV102 - Convective heat transport in a parallelepiped
      • v4.04.103: TPLV103 - Infinite cylinder in anisotropic stationary thermal
      • v4.04.105: TPLV105 - Stationary nonlinear thermics in a moving coordinate system: simulation of the Varestrain test
      • v4.04.106: TPLV106 - Thermal nonlinear stationary in a moving coordinate system
      • v4.04.304: TPLV304 - Temperature distribution in a square cross section bar
      • v4.04.305: TPLV305 - Thermal gradient in a cylinder (Fourier)
      • v4.05.001: TPLP01 - L-shaped domain with geometric singularity
      • v4.05.002: TPLP02 - Orthotropic square
      • v4.05.107: TPLP107 — Method of manufactured solutions in 2D thermics
      • v4.05.300: TPLP300 - Rectangular plate: convection, imposed temperature
      • v4.05.301: TPLP301 - Square plate with imposed temperature distributed sinusoidally
      • v4.05.302: TPLP302 - Rectangular plate with imposed temperature
      • v4.05.303: TPLP303 - Temperature distribution in the section of a chimney pipe
      • v4.05.305: TPLP305 — Imposed temperature bar with X-FEM adiabatic interface
      • v4.19.203: TTLA203 - Cylinder at imposed temperatures with adiabatic crack
      • v4.20.200: TTNA200 - Thermal linear and non-linear 2D AXIS
      • v4.21.001: TTLL01 - Thermal shock on an infinite wall
      • v4.21.100: TTLL100 - Thermal shock on a flat wall with exchange condition
      • v4.21.301: TTLL301 - Heat transfer in a bar with imposed temperature (sine wave)
      • v4.21.303: TTLL303 - Heat transfer in a bar with internal heat generation
      • v4.22.002: TTNL02 - Thermal transient with phase change
      • v4.22.003: TTNL03 - Thermo-hydration. Simulation of an adiabatic test
      • v4.22.004: TTNL04 — Thermal with non-linear flow in 2D transient
      • v4.22.100: TTNL100 - Non-linear heat source, homogeneous solution in space
      • v4.22.101: TTNL101 - Non-linear heat source in a bar
      • v4.22.302: TTNL302 - Infinite wall subject to a constant flow with variable properties
      • v4.22.303: TTNL303 - Infinite wall subject to a temperature jump with variable properties
      • v4.22.304: TTNL304 - Infinite wall subject to a temperature jump with variable orthotropic properties
      • v4.23.100: TTLP100 — Transient thermal wall exchange
      • v4.23.101: TTLP101 - Plate cracked at imposed temperatures with the condition of exchange through the lips of the crack
      • v4.23.300: TTLP300 - Heat transfer in an orthotropic metal bar
      • v4.23.301: TTLP301 - Heat transfer in a perforated plate
      • v4.23.302: TTLP302 - Heat transfer in a plane domain with geometric singularity
      • v4.23.303: TTLP303 - Heat transfer in an orthotropic plate: imposed temperatures
      • v4.23.304: TTLP304 - Heat transfer in an orthotropic plate: imposed flows
      • v4.24.001: TTNP01 — STEFAN problem with lumped elements - QUAD9
      • v4.24.200: TTNP200 - Thermal linear and non-linear 2D PLAN
      • v4.24.201: TTNP201 -Heat transfer with time-dependent conductivity
      • v4.25.001: TTLV01 — Sphere: convective heat exchange
      • v4.25.100: TTLV100 - Thermal shock in a pipe with exchange condition
      • v4.25.300: TTLV300 - Parallelepiped subject to a flux density on its faces
      • v4.25.301: TTLV301 - Parallelepiped subjected to a temperature imposed on its faces
      • v4.26.101: TTNV101 — Concrete drying — identification of parameters on the mass loss curve
      • v4.41.001: TPNA01 - Stationary axisymmetric problem with radiation
      • v4.41.300: TPNA300 - Heat generator tube with variable conductivity
      • v4.42.300: TPNL300 - One-dimensional heat transfer with radiation
      • v4.43.001: TPNV01 - Hollow sphere: convection, radiation
      • v4.61.100: MTLP100 - Heating and tempering of an infinity bar with a square cross section
      • v4.61.101: MTLP101 - Metallurgical calculation for a zircaloy
      • v4.61.102: MTLP102 - Metallurgical calculation for steel taking into account grain size
      • v4.61.103: MTLP103 - Hardening of a 16 MND5 cylindrical steel bar
      • v4.61.104: MTLP104 - Steel revenue model
      • v4.61.200: MTLP200 — Multi-pass simulation of welding on the RIS line
    • v5
      • v5.01.100: SDND100 - Releasing a friction pad with Coulomb friction
      • v5.01.101: SDND101 - Release of a spring mass system with shock
      • v5.01.102: SDND102 - Seismic response of a multi-supported nonlinear mass-spring system
      • v5.01.103: SDND103 - Post subject to dynamic axial stress
      • v5.01.104: SDND104 - Calculation of the wear power of a friction mass under harmonic seismic excitation
      • v5.01.105: SDND105 — Impact of a material point against a wall with plastic buckling
      • v5.01.106: SDND106 — Sliding pad with static and dynamic friction coefficients
      • v5.01.107: SDND107 - Release and seismic excitation of a system with a non-linear viscous damper of the "Zener" type
      • v5.01.108: SDND108 - Behavioral law DIS_CONTACT in dynamics
      • v5.01.109: SDND109 - Law of behavior CHOC_ENDO, in non-linear dynamics
      • v5.01.110: SDND110 — Seismic excitation of a discrete affected by CHOC_ELAS_TRAC behavior
      • v5.01.111: SDND111 - DIS_CHOC, with contact managed in the global coordinate system, in non-linear dynamics
      • v5.01.120: SDND120 - Transient response of an anti-seismic device
      • v5.01.121: SDND121 — Spring mass system with shocks under forced excitation
      • v5.01.122: SDND122 — Nonlinear mode calculation — system with 1 degree of freedom impacting an elastic stop
      • v5.01.123: SDND123 — Linear mode calculation for a system with 2 degrees of freedom with an elastic bilateral stop
      • v5.01.124: SDND124 — Seismic excitation of a discrete affected by DIS_ECRO_TRAC behavior
      • v5.01.125: SDND125 — Treatment of localized nonlinear behaviors with DYNA_VIBRA
      • v5.02.032: SDNL32 - Impact of an articulated beam on elastic support
      • v5.02.100: SDNL100 - Simple pendulum in great oscillation
      • v5.02.102: SDNL102 - Beam subject to a wind speed field
      • v5.02.103: SDNL103 - Dynamics of a gantry modelled by highly rotating beam elements. Comparison with a small rotation analysis
      • v5.02.104: SDNL104 - Non-linear transient substructuration: impact of a beam on 1 support
      • v5.02.105: SDNL105 - Transient non-linear substructuration: shock of 3 beams between them
      • v5.02.112: SDNL112 - Vibratory damage to a steam generator hanger
      • v5.02.113: SDNL113 - Lyre-shaped pipe (ELSA tests) under seismic loading
      • v5.02.130: SDNL130 - Seismic response of a reinforced concrete beam (rectangular section) with non-linear behavior
      • v5.02.133: SDNL133 — Rotating cracked rotor, subjected to a bending force
      • v5.02.137: SDNL137 — Calculation of non-linear modes of a bent pipe with two annular contact type nonlinearities
      • v5.02.138: SDNL138 - Frequencies and natural modes of vibration of a self-stressed frame
      • v5.02.139: SDNL139 - 1D-3D non-intrusive rocker for a double-supported beam
      • v5.02.140: SDNL140 — Damped vibration of two beams in contact and friction
      • v5.02.141: SDNL141 — Oscillating submerged beam subjected to a wave field
      • v5.02.142: SDNL142 — Submerged cable subject to a wave field
      • v5.02.143: SDNL143 — Pile subject to a wave field
      • v5.02.301: SDNL301 — Vibration of a beam with multi-point impact
      • v5.03.100: SDNV100 - Impact of a beam on a rigid wall
      • v5.03.106: SDNV106 — Eigenvalue analysis in DYNA_NON_LINE (stability and vibration modes)
      • v5.03.108: SDNV108 — Hollow volume cylinder rotating around its axis, taking into account gyroscopy
      • v5.03.109: SDNV109 — Full volume cylinder rotating around its axis, taking into account gyroscopy
      • v5.03.110: SDNV110 — Solid rotor rotating around its axis, taking into account gyroscopy
      • v5.03.112: SDNV112 - Multi-support seismic type civil engineering building
      • v5.06.105: SDNS105 — Simulation of a dynamic pull test with cohesive elements
      • v5.06.106: SDNS106 — Transient response of a reinforced concrete slab: models GLRC_DAMAGE and GLRC_DM
      • v5.06.107: SDNS107 — Transient response of a reinforced concrete slab: model with GRILLE_EXCENTRE
      • v5.06.109: PLEXU04: Cylinder with prestress cables under internal pressure in transient dynamics
      • v5.06.110: PLEXU06 — Code_Aster chaining validation - Europlexus
    • v6
      • v6.01.001: SSNA01 - Infinite cylinder under pressure: Lemaître viscoelasticity
      • v6.01.102: SSNA102 - Elastic multibody contact
      • v6.01.103: SSNA103 - Weibull model parameter calibration
      • v6.01.104: SSNA104 - Hollow cylinder under pressure, linear viscoelasticity
      • v6.01.105: SSNA105 - Hollow cylinder subjected to pressure, linear viscoelasticity, contact
      • v6.01.106: SSNA106 - Hollow cylinder subjected to thermoviscoelastic behavior
      • v6.01.107: SSNA107 — Hollow cylinder in nonlinear viscoelasticity
      • v6.01.108: SSNA108 - Weibull, Bordet, and Rice and Tracey models
      • v6.01.109: SSNA109 - Tensile test with model VISC_CIN2_CHAB
      • v6.01.110: SSNA110 - Recalibrating parameters with the VISC_CIN2_CHAB template
      • v6.01.111: SSNA111 - Indentation of a block with a punch
      • v6.01.112: SSNA112 — Axisymmetric pull-out test for the study of the steel-concrete bond: law JOINT_BA
      • v6.01.114: SSNA114 - Drained triaxial test with model VISC_MAXWELL
      • v6.01.115: SSNA115 — Pulling a rigid frame with cohesive elements
      • v6.01.116: SSNA116 - Triaxial test with the Hoek-Brown model modified axisymmetrically
      • v6.01.119: SSNA119 — Damage to a specimen notched in AXIS
      • v6.01.120: SSNA120 — Notched axisymmetric test tube (AE) with joint and interface elements
      • v6.01.121: SSNA121 - Concrete tube subjected to internal pressure with model BETON_UMLV
      • v6.01.122: SSNA122 — Contact validation benchmark NAFEMS 2: punch (rounded edges)
      • v6.01.123: SSNA123 — Validation of the law of behavior of steels under axisymmetric irradiation
      • v6.01.125: SSNA125 - Hollow sphere with internal and external pressure
      • v6.01.129: SSNA129 - Elastoplastic tubes subject to axisymmetric internal/external pressures
      • v6.01.301: SSNA301 - Thick pressurized tank bottom
      • v6.01.302: SSNA302 - Circular plate simply supported under pressure
      • v6.01.303: SSNA303: Elastoplastic notched specimen with large deformations
      • v6.02.100: SSNL100 - Laying a line canton with two equal spans
      • v6.02.101: SSNL101 - Nonlinear behavior of a line arming element
      • v6.02.102: SSNL102 - Nonlinear behavior of an angle assembly
      • v6.02.103: SSNL103 - Cantilever beam in large rotations subject to a moment
      • v6.02.105: SSNL105 - Guyed frame
      • v6.02.106: SSNL106 - Elastoplastic beam in pure tension and bending
      • v6.02.107: SSNL107 - Embedded plate subjected to bending by beams in contact with the free edge
      • v6.02.111: SSNL111 - Three perfect Von Mises thermo-elastoplastic bars
      • v6.02.112: SSNL112 - Bar subject to cyclic thermal loading
      • v6.02.114: SSNL114 - Heavy cable with thermal expansion
      • v6.02.115: SSNL115 - Cable with thermal expansion
      • v6.02.116: SSNL116 - Gaseous insulated cable section
      • v6.02.117: SSNL117 - Elastoplasticity flexure elbow
      • v6.02.118: SSNL118 - Bar subject to a wind speed field
      • v6.02.119: SSNL119 - Static response of a reinforced concrete beam (rectangular section) with non-linear behavior
      • v6.02.120: SSNL120 - Cyclic response of concrete behavior laws in 1D
      • v6.02.122: SSNL122 - Multifiber cantilever beam subjected to stress
      • v6.02.123: SSNL123 - Buckling of a Multi-Fiber Beam
      • v6.02.124: SSNL124 - Axial creep of a HEXA8 element with a behavior of LEMAITRE_IRRA
      • v6.02.125: SSNL125 - Traction of a fragile bar: gradient damage
      • v6.02.126: SSNL126 - Elastoplastic buckling of a straight beam
      • v6.02.127: SSNL127 - Tensile test with model CORR_ACIER
      • v6.02.129: SSNL129 — Validation of laws VISC_ISOT_TRAC and VISC_ISOT_LINE on a tensile test
      • v6.02.130: SSNL130 — Non-deformable plate on a spring mat
      • v6.02.133: SSNL133 — Elastic post-buckling of an L-structure
      • v6.02.134: SSNL134 - Elasto-plastic ruin of Lee's portico
      • v6.02.135: SSNL135 — Determination of the ruin loads of the MEKELEC console
      • v6.02.136: SSNL136 - Large movements of the arc at an opening angle of 45°
      • v6.02.137: SSNL137 - Elastoplasticity tensile bars using the IMPLEX method
      • v6.02.138: SSNL138 - Validation of the optimization algorithm under the constraint of inequalities of option DDL_STAB
      • v6.02.139: SSNL139 — Validation of the update of the girder twist angle
      • v6.02.141: SSNL141 - Multifiber and multi-material beams
      • v6.02.142: FORMA43 - Practical work from the "Civil Engineering" training: 3-point bending of a reinforced concrete beam.
      • v6.02.143: SSNL143 — Validation of the relaxation law for pre-stressed steel cables
      • v6.02.501: SSNL501 - Beam embedded at both ends subjected to uniform pressure
      • v6.02.502: SSNL502 - Buckle beam
      • v6.02.503: SSNL503 - Elasto-plastic ruin of a thin bent pipe
      • v6.02.504: SSNL504 — Assembly skeleton element
      • v6.03.002: SSNP02 - Plate element in plane deformations and biaxial traction (Norton's law)
      • v6.03.003: SSNP03 — Cracked body analysis of a plate in 2D plane strain conditions with initial constraints
      • v6.03.005: SSNP05 - Traction-shear plate: Lemaître viscoelasticity
      • v6.03.006: SSNP006 — Analysis of the stability of a homogeneous slope using the Bishop method
      • v6.03.007: SSNP007 - Stability analysis of an undrained slope with weak layer by the Morgenstern-Price method
      • v6.03.014: SSNP14 - Traction-shear plate - Von Mises (kinematic work hardening)
      • v6.03.015: SSNP15 - Traction-shear plate - Von Mises (isotropic work hardening)
      • v6.03.101: SSNP101 - Traction-shear plate: Lemaître viscoelasticity (D_ PLAN)
      • v6.03.103: SSNP103 - Calculation of the energy return rate in nonlinear elasticity
      • v6.03.105: SNNP105 — Analysis of a square massif with a unit side by the Bielles-Tirants method
      • v6.03.106: SNNP106 — Calculation of the reinforcement of a sail girder with a hopper by the Tie rods method
      • v6.03.107: SSNP107 - Traction-shear plate: Lemaître viscoelasticity and isotropic work hardening
      • v6.03.108: SSNP108 - Concrete element prestressed in compression
      • v6.03.109: SSNP109 - Eccentric prestress cable in a straight concrete beam
      • v6.03.110: SSNP110 - Edge crack in a rectangular plate finished in elastoplasticity
      • v6.03.111: SSNP111 - Passage from Gauss points to nodes on quadratic elements
      • v6.03.112: FORMA10 - Practical work from the "Advanced use" training: loading path
      • v6.03.113: SSNP113 - Rotation of main constraints (law of MAZARS)
      • v6.03.114: FORMA03 - Practical work from the "Advanced use" training course: limit load of a perforated plate
      • v6.03.116: SSNP116 - Creep/crack coupling - Uniaxial traction
      • v6.03.117: SSNP117 - 2D Rousselier model - DP
      • v6.03.118: SSNP118 - Validation of joint and interface elements in 2D plane and 3D
      • v6.03.119: FORMA20 - Mechanical adaptive mesh on a flexure beam
      • v6.03.120: FORMA21 - Thermo-mechanical adaptive mesh on a cracked cylinder head
      • v6.03.121: SSNP121 — Integration of contact terms in 2D and 3D
      • v6.03.122: SSNP122 - Traction. Rousselier model in local and non-local versions
      • v6.03.123: SSNP123 - Elastoplasticity notched plate
      • v6.03.124: SSNP124 — Drained biaxial test with DRUCK_PRAGER softening behavior
      • v6.03.125: SSNP125 - Test case for the validation of option INDL_ELGA
      • v6.03.126: SSNP126 - Validation of the JOINT_BA law of behavior (steel-concrete link) in 2D plane
      • v6.03.128: SSNP128 - Validation of the discontinuity element on a flat plate
      • v6.03.129: SSNP129 - Validation of the law of regulatory behavior BETON_REGLE_PR
      • v6.03.130: SSNP130 - Detecting singularities in a cracked plate
      • v6.03.131: SSNP131 - Identification of the energy parameter Gp in 2D and 3D
      • v6.03.133: SSNP133 - Cracking a perforated plate with cohesive models
      • v6.03.136: SSNP136 — Filament foundation test with an elastoplastic Cam-Clay law
      • v6.03.138: SSNP138 - 2D angled crack with X- FEM
      • v6.03.140: SSNP140 - Tensile test on an elastoplastic perforated plane using the IMPLEX method
      • v6.03.143: SSNP143 — Validation of keying/sawing for the law of joint of stud joints of dams
      • v6.03.144: SSNP144 — Use of a cohesive zone model with the X- FEM method
      • v6.03.145: SSNP145 — Validation of PRED_ELAS control in plasticity
      • v6.03.147: SSNP147 — Modeling crack initiation with the ENDO_HETEROGENE model
      • v6.03.148: SSNP148 - Calculation of the stress intensity factor by stress regularization with ENDO_HETEROGENE
      • v6.03.150: SSNP150 — Method of manufactured solutions in 2D contact and large deformations
      • v6.03.151: SSNP151 — Compact Tension (CT) test tube in 2D and 3D with the CZM_TRA_MIX law
      • v6.03.152: SSNP152 — Inclusion of two crowns
      • v6.03.153: SSNP153 - 2D deformable-deformable friction contact in large deformations (shallow ironing)
      • v6.03.154: SSNP154 — NAFEMS contact validation benchmark 1: cylinder roller contact
      • v6.03.156: SSNP156 — Contact validation benchmark NAFEMS 4: loaded pin
      • v6.03.158: SSNP158 — Non-linear mesh adaptation
      • v6.03.159: SSNP159 — Elastic energy in large plastic deformations of a bar under tension
      • v6.03.160: SSNP160 — Diffusion of hydrogen in elastoplastic steel
      • v6.03.161: SSNP161 — Kupfer biaxial tests
      • v6.03.162: SSNP162 — 2D and 3D joints for laws JOINT_MECA_RUPT and JOINT_MECA_FROT
      • v6.03.163: SSNP163 — Validation of the law of behavior of steels under irradiation under plane stresses
      • v6.03.164: SSNP164 — 2D and 3D joints for law JOINT_MECA_ENDO
      • v6.03.165: SSNP165 — Ring on block
      • v6.03.166: SSNP166 - Notched beam in three-point bending
      • v6.03.167: SSNP167 - Inclusion of two crowns under non-uniform pressure
      • v6.03.169: SSNP169 — Solid disk crossed by an X- FEM interface under non-uniform pressure
      • v6.03.170: SSNP170 — Taylor patch test
      • v6.03.171: SSNP171 - Closing a flexural crack
      • v6.03.173: SSNP173 - Contact between two concentric spheres
      • v6.03.176: SSNP176 — Type D_ PLAN_INCO_ * modeling in almost incompressible elasticity
      • v6.03.178: SSNP178 — Cook membrane in small plastic deformations
      • v6.03.179: SSNP179 — Cook membrane in large plastic deformations
      • v6.03.302: SSNP302 - Thermal loaded element - Appearance of parasitic stresses
      • v6.03.303: SSNP303 - Element with plane stress and traction - Perfect plasticity
      • v6.03.305: SSNP305 - Compressed bar element - Appearance of a negative pivot
      • v6.03.306: SSNP306 - Validation of the buckling criterion by selective search for eigenvalues
      • v6.03.307: SSNP307 - Validation of modeling GVNO and the law of behavior ENDO_CARRE in D_ PLAN
      • v6.03.311: SSNP311 - Biblio_131. Mode II cracking of an elastoplastic specimen
      • v6.03.312: SSNP312 - DMT94 .132 Crack parallel to the interface in a bimetallic CT specimen
      • v6.03.501: SSNP501 - Crush of a polyurethane ring between two non-deformable plates without friction
      • v6.03.502: SSNP502 - Crush of a polyurethane ring between two non-deformable plates with friction
      • v6.03.504: SSNP504 — Contact in large swings for compliant oblique cracks
      • v6.03.505: SSNP505 - Multi-cracked bitraction-shear plate with X- FEM
      • v6.03.506: SSNP506 — Non-linear eccentricity check
      • v6.03.507: SSNP507 - Stability of an undrained clay slope on a weak foundation
      • v6.04.102: SSNV102 - Tensile shear test with the TAHERI model
      • v6.04.103: SSNV103 - Rousselier model shear tensile test
      • v6.04.104: SSNV104 - Contact of two spheres
      • v6.04.105: SSNV105 - Model BETON_GRANGER_V: creep test taking into account relative humidity and aging.
      • v6.04.106: SSNV106 - Assembly of 2 parts by a screw taking into account the rubbing contact in HPC
      • v6.04.108: SSNV108 - European CT-Round Robin Test Tube in Fracture Mechanics (1985)
      • v6.04.109: SSNV109 - Evaluation of the time to cracking (initiation by stress corrosion) by the BaBy model (Barbier-Bystricky)
      • v6.04.112: SSNV112 - Incompressible hollow cylinder (large deformations)
      • v6.04.115: SSNV115 - Corrugated sheet metal in non-linear behavior
      • v6.04.116: SSNV116 — POLYCRISTAL steel UMAT law — benchmark with Abaqus
      • v6.04.118: SSNV118 - Tensile shear test with the viscoplastic Chaboche model
      • v6.04.121: SSNV121 - Hyper-elastic rotation and traction of a bar
      • v6.04.122: SSNV122 - Hyper-elastic rotation and follower traction of a bar
      • v6.04.124: SSNV124 - Regularized limit analysis. Norton—Hoff's law
      • v6.04.126: SSNV126 - Anisothermal traction-relaxation test specimen with the VENDOCHAB model
      • v6.04.127: SSNV127 - Cylinder in a bore with contact and friction
      • v6.04.128: SSNV128 - Plate with contact and friction on a rigid plane
      • v6.04.129: SSNV129 - Contact of 2 plates in simple support, one of which is subject to pressure
      • v6.04.130: SSNV130 —Straight cracked elasto-plasticity pipe subjected to bending
      • v6.04.131: SSNV131 —Straight cracked elasto-plasticity pipe under combined loading
      • v6.04.133: SSNV133 - Uniaxial traction-compression. Mixed work hardening
      • v6.04.135: SSNV135 - Drained triaxial test with model CJS (level 1)
      • v6.04.136: SSNV136 - Drained triaxial test with model CJS (level 2)
      • v6.04.137: SSNV137 - Prestressing cable in a straight concrete beam
      • v6.04.138: SSNV138 - Cantilever plate in large rotations subjected to a moment
      • v6.04.139: SSNV139 - Bias plate
      • v6.04.140: SSNV140 - Recessed cylindrical panel
      • v6.04.141: SSNV141 - Pinched spherical cap
      • v6.04.142: SSNV142 - Own creep test: Granger model
      • v6.04.143: SSNV143 - Biaxial traction with the BETON_DOUBLE_DP law of behavior
      • v6.04.144: SSNV144 - Elbow flexed during large movements
      • v6.04.145: SSNV145 - Cantilever plate in large rotations subjected to a subsequent pressure
      • v6.04.146: SSNV146 - Regularized limit analysis. Torispherical bottom tank
      • v6.04.147: SSNV147 - Traction of a damaging bar: validation of the pilot
      • v6.04.148: SSNV148 - Weibull and Rice-Tracey models in 3D and in landfill
      • v6.04.149: SSNV149 - ENDO_ISOT_BETON test
      • v6.04.150: SSNV150 - Triaxial traction with the BETON_DOUBLE_DP law of behavior
      • v6.04.151: SSNV151 - Traction/Compression with the BETON_DOUBLE_DP law of behavior
      • v6.04.152: SSNV152 - Elastic traction. Calculation of Cauchy stresses
      • v6.04.153: SSNV153 - Pulley-rope contact
      • v6.04.154: SSNV154 - Drained triaxial test with model CJS (level 3)
      • v6.04.155: SSNV155 - Drained triaxial test on a sample rotated at an angle of —PI/6 with respect to the x axis with model CJS (level 2)
      • v6.04.158: SSNV158 - Drained triaxial test with the Lagle model
      • v6.04.159: FORMA08 - Practical work from the "Fracture mechanics" training course: circular crack in mixed mode
      • v6.04.160: SSNV160 - Hydrostatic test with behavior models CAM_CLAY, MCC and CSSM
      • v6.04.163: SSNV163 - Self-creep calculation with models BETON_UMLV and BETON_BURGER
      • v6.04.164: SSNV164 - Tension of prestress cables in a 3D beam
      • v6.04.165: FORMA42 - Practical work from the "Civil Engineering" training course: tensioning a prestressed beam with a variable section
      • v6.04.166: SSNV166 — Cracked cylinder under multiple loads
      • v6.04.167: SSNV167 — Contact for quadratic elements
      • v6.04.168: SSNV168 — Drained triaxial test with DRUCK_PRAGER softening behavior
      • v6.04.169: SSNV169 - Creep — damage coupling
      • v6.04.170: SSNV170 - Elasto-viscoplastic cube under simple traction (constant deformation rate)
      • v6.04.171: SSNV171 — Inter-comparison of MONOCRISTAL AND POLYCRISTAL behaviors
      • v6.04.172: SSNV172 — Monocrystalline viscoplastic behaviors
      • v6.04.173: SSNV173 — Cracked bar with X- FEM
      • v6.04.174: SSNV174 - Taking into account endogenous shrinkage and desiccation withdrawal in models BETON_UMLV and BETON_BURGER
      • v6.04.176: SSNV176 — Identifying the law ENDO_ORTH_BETON
      • v6.04.177: SSNV177 - Willam's test with the ENDO_ORTH_BETON law
      • v6.04.178: SSNV178 — Cylinder with pressurized frame
      • v6.04.179: SSNV179 - Cube under creep via the LEMA_SEUIL law
      • v6.04.180: SSNV180 - Consideration of thermal expansion and desiccation creep in models BETON_UMLV and BETON_BURGER
      • v6.04.181: SSNV181 - Verification that shear has been properly taken into account in the BETON_UMLV and BETON_BURGER models
      • v6.04.182: SSNV182 — Block with interface in friction contact with X- FEM
      • v6.04.183: SSNV183 - Creep test with model VENDOCHAB
      • v6.04.184: SSNV184 - Triaxial test with the modified Hoek-Brown model
      • v6.04.186: SSNV186 — LBB condition and rubbing contact with X- FEM
      • v6.04.187: SSNV187 - Validation of the ELAS_HYPER law on a cube
      • v6.04.189: SSNV189 - Validation of the ELAS_HYPER law on a tab
      • v6.04.191: SSNV191 — Validation of Neumann conditions with X- FEM in 2D and 3D
      • v6.04.193: SSNV193 — Contact with static macro elements
      • v6.04.195: SSNV195 - Multi-crack bar with X- FEM
      • v6.04.196: SSNV196 — Bending 3D beam (stabilized sub-integrated HEXA8 elements)
      • v6.04.197: SSNV197 - Triaxials drained with Hujeux's law
      • v6.04.198: SSNV198 — Dirichlet conditions with X- FEM in 3D
      • v6.04.200: SSNV200 - Tensile shear test with model VISC_TAHERI
      • v6.04.201: SSNV201 — Block with interface in sliding contact with X- FEM
      • v6.04.202: SSNV202 — Drained oedometric test with CAM_CLAY and MCC behavior models
      • v6.04.203: SSNV203 — Applying pressure to the lips of a crack with X- FEM
      • v6.04.204: SSNV204 — Cyclic drained isotropic compression test on Hostun sand
      • v6.04.205: SSNV205 — Drained cyclic shear test at constant isotropic pressure
      • v6.04.206: SSNV206 - Triaxial test: models LETK, LKR and NLH_CSRM
      • v6.04.207: SSNV207 — Cyclic shear test including micro discharges
      • v6.04.208: SSNV208 — Drained biaxial test with Hujeux's law
      • v6.04.210: SSNV210 — Drained shear test with Hujeux's law
      • v6.04.211: SSNV211 - Drained triaxial test with model VISC_DRUC_PRAG
      • v6.04.214: SSNV214 - Law of behavior BETON_RAG: cyclic loading of a concrete test piece
      • v6.04.215: SSNV215 - Law of behavior BETON_RAG: main direction rotation test
      • v6.04.217: SSNV217 - Cube in simple tension and compression with the ENDO_ORTH_BETON law
      • v6.04.218: SSNV218 — Calculation of the energy parameter Gp in 3D
      • v6.04.219: SSNV219 — Method of manufactured solutions in 3D contact and large deformations
      • v6.04.220: SSNV220 - Validation of the GVNO modeling and the law of behavior ENDO_CARRE in 3D
      • v6.04.221: SSNV221 — Hydrostatic test with DRUCK_PRAGER linear and parabolic behavior
      • v6.04.222: FORMA04 - Practical work from the "Advanced Use" training: contact from Hertz
      • v6.04.223: SSNV223 - Elementary validation of the ENDO_SCALAIRE law and the PRED_ELAS management for modeling GRAD_VARI
      • v6.04.225: SSNV225 — Behavioral law HAYHURST: creep test
      • v6.04.226: SSNV226 — Validation of the failure criterion under critical stress
      • v6.04.228: SSNV228 — Pre-tensioning a stud
      • v6.04.229: SSNV229 - Validation of formulas ETCC in DEFI_CABLE_BPet for cable breakage
      • v6.04.230: SSNV230 - Validation of the law of behavior of 300 steels under 3D irradiation
      • v6.04.231: SSNV231 — Hollow sphere under internal pressure in large deformations
      • v6.04.232: SSNV232 — Drained triaxial test with MOHR_COULOMB and MohrCoulombas laws
      • v6.04.233: SSNV233 — Torsion test with Mohr-Coulomb law
      • v6.04.234: SSNV234 - Elementary validation of the ENDO_FISS_EXP law and the PRED_ELAS management for modeling GRAD_VARI
      • v6.04.244: SSNV244 - Behavioral law FLUA_PORO_BETON, ENDO_PORO_BETON, FLUA_ENDO_PORO and RGI_BETON
      • v6.04.245: SSNV245 - Imposing Dirichlet conditions on XFEM Heaviside elements using a space function
      • v6.04.246: SSNV246 - Application of pressure distributed over the lips of a curved XFEM interface crossing a column
      • v6.04.247: SSNV247 - Application of pressure distributed over the lips of a curved XFEM interface crossing a spherical cap
      • v6.04.250: SSNV250 — Elementary validation of the damage law GTN in the case a xisymmetric
      • v6.04.251: SSNV25 1 — Elementary validation of the damage law GTN in plane deformation with simulations of a volume element under biaxial tension e
      • v6.04.252: SSNV25 2 — Elementary validation of the damage law GTN in plane deformation with simulations of a volume element under simple shear
      • v6.04.253: SSNV25 3 — Elementary validation of the damage law GTN in plane deformation with simulations of a volume element in pure shear
      • v6.04.254: SSNV25 4 — Elementary validation of the damage law GTN in plane deformation with simulations of a volume element under simple tension
      • v6.04.255: SSNV25 5 — Validation of the GTN gradient damage law with simulations of a bar in plane deformations
      • v6.04.256: SSNV25 6 — Validation of the GTN gradient damage law with axisymmetric bar simulations
      • v6.04.259: SSNV259 — Circular crack in a solid cylinder under tension
      • v6.04.261: SSNV261 — ENDO_LOCA_EXP tensile behavior — confined uniaxial compression
      • v6.04.262: SSNV262 — Validation of viscous regulation REGU_VISC by viscoelastic simulation
      • v6.04.263: SSNV263 — Non-linear isotropic work hardening plasticity VMIS_ISOT_NL under triaxial loading and shearing
      • v6.04.264: SSNV264 — Non-linear isotropic work hardening viscoplasticity VISC_ISOT_NL under triaxial loading and shear
      • v6.04.265: SSNV265 — Model GTN: germination under deviatoric loading
      • v6.04.266: SSNV266 — Validation of the GTN viscoplastic gradient damage law with bar simulations
      • v6.04.267: SSNV267 — Multiaxial stress from the KICHENIN_NL law: viscoelastic part
      • v6.04.268: SSNV268 — Multiaxial solicitation of the KICHENIN_NL law: plastic part
      • v6.04.269: SSNV269 — Validation of the RGI_BETON_BA law: Cyclic loading of a concrete specimen
      • v6.04.301: SSNV301 - Rotating cylindrical ring subjected to thermal shock and internal pressure — Von Mises (Isotropic work hardening)
      • v6.04.302: SSNV302 — Non-linear embedded beam
      • v6.04.303: SSNV303 — Non-linear embedded beam
      • v6.04.400: SSNV400 — Verification of the law of behavior BETON_RAG: damaging mechanics
      • v6.04.401: SSNV401 — Verification of the law of behavior BETON_RAG: creep phenomenon
      • v6.04.402: SSNV402 — Verification of the law of behavior BETON_RAG: coupling of phenomena
      • v6.04.501: SSNV501 — Stamping a sheet metal with a hemispherical punch (Wagonner test)
      • v6.04.503: SSNV503 - Sliding skate on a rigid plane
      • v6.04.504: SSNV504 - Extruding a piece of paper
      • v6.04.506: SSNV506 - Elasto-plastic indentation of a block by an elastic spherical indenter
      • v6.04.508: SSNV508 — Block in plane stresses with interface, in tension and lateral compression, for quadratic X- FEM elements
      • v6.04.509: SSNV509 — Chain in friction contact with X-FEM quadratic
      • v6.04.510: SSNV510 - Uniaxial compression of a multi-cracked block
      • v6.04.511: SSNV511 — Block cut by two interfaces intersected with X- FEM
      • v6.04.512: SSNV512 — Block cut by a vertical crack connecting between 2 horizontal cracks with X- FEM
      • v6.04.513: SSNV513 — Block divided by three interfaces that connect sequentially with X- FEM
      • v6.04.515: SSNV515 — Tensile test with Rankine's law
      • v6.04.518: SSNV518 - Modeling a relaxation test with the visco-hyper-elastic law (ELAS_HYPER_VISC)
      • v6.04.519: SSNV519 - Modeling a creep test with the visco-hyper-elastic law (ELAS_HYPER_VISC)
      • v6.05.100: SSNS100 - Nonlinear behavior of a layer of reinforcements under thermal loading
      • v6.05.105: SSNS105 — Nonlinear behavior of a rebar sheet
      • v6.05.106: SSNS106 — Degradation of a reinforced concrete plate under various stresses with global laws GLRC_DM and DHRC
      • v6.05.107: SSNS107 — Cylinder with pressurized reinforcements
      • v6.05.108: SSNS108 — Simulation of test SAFE by progressive thrust
      • v6.05.109: SSNS109 — Console beam subjected to shear force
      • v6.05.110: SSNS110 — Extraction of a reinforcing sheet represented by a membrane
      • v6.05.112: SSNS112 — Compression and alternating tension test of a reinforced concrete column
      • v6.05.114: SSNS114 — Degradation of a reinforced concrete plate under various stresses with the BETON_REGLE_PR law
      • v6.05.115: SSNS115 - Swelling of a flexible membrane
      • v6.05.116: SSNS116 — Self-weight flexible membrane
      • v6.05.501: SSNS501 - Large movements of a simply supported cylindrical panel
      • v6.06.101: SSNX101 — Non-linear load control
      • v6.07.101: COMP001 — Elasto-plastic behavior test. Simulation at a hardware point
      • v6.07.102: COMP002 — Test of visco-elasto-plastic behaviors. Simulation at a hardware point
      • v6.07.103: COMP003 — Test of behaviors specific to concrete. Simulation at a hardware point
      • v6.07.107: COMP007 — Thermo-mechanical validation of non-linear elastic laws (COMPORTEMENT)
      • v6.07.108: COMP008 — Thermo-mechanical validation of elasto-plastic laws
      • v6.07.109: COMP009 — Thermo-mechanical validation of modeling BARRE
      • v6.07.110: COMP010 — Thermo-mechanical validation of elastoviscoplastic laws
      • v6.07.111: COMP011 — Thermo-mechanical validation of laws for concrete
      • v6.07.112: COMP012 — Validation of the CALC_ESSAI_GEOMECA macro-command with several laws of behavior
      • v6.08.101: SSND101 — Behavioral law for viscous dampers on discrete elements
      • v6.08.102: SSND102 — Law of non-linear kinematic behavior for discrete elements
      • v6.08.103: SSND103 - Validation of a bilinear law of behavior on a discrete element (application to bolted assemblies)
      • v6.08.104: SSND104 - Validating behavior DRUCK_PRAG_N_A
      • v6.08.105: SSND105 - Law of visco-elasto-plastic behavior with memory effect
      • v6.08.106: SSND106: Tractions, multiple rotations in large deformations, isotropic work hardening
      • v6.08.107: SSND107: Tractions, multiple rotations in large deformations, kinematic and mixed work hardening
      • v6.08.109: SSND109 - Cyclic loading on a single crystal
      • v6.08.110: SSND110 — Validation of monocrystalline laws from Dislocation Dynamics
      • v6.08.111: SSND111 - Memory effect in a cyclic test
      • v6.08.112: SSND112 — Network rotation and large deformations on a single crystal
      • v6.08.113: SSND113 - SIMU_POINT_MAT in large deformations, imposed transformation gradient
      • v6.08.114: SSND114 — Behavioral law for elastoplastic junctions that are damaged when flexed with discrete elements
      • v6.08.115: SSND115 - Law of elasto-plastic behavior with the effect of non-radiality
      • v6.08.116: SSND116 - Law of behavior DIS_CONTACT in statics
      • v6.08.117: SSND117 — Validating behavior DIS_ECRO_TRAC
      • v6.08.118: SSND118 - Behavioral law DIS_CONTACT, management of initial contact
      • v6.08.119: SSND119 - Validating the DASHPOT relationship for discrete elements
      • v6.08.120: SSND120 - Law of behavior CHOC_ENDO, in nonlinear statics.
      • v6.08.121: SSND121 — Validation of non-linear behavior CHOC_ELAS_TRAC
      • v6.08.122: SSND122 - DIS_CHOC, with contact managed in the global coordinate system, in non-linear static
    • v7
      • v7.01.100: HPLA100 - Thermoelastic hollow cylinder weighing in uniform rotation
      • v7.01.310: HPLA310 - Biblio_49 External radial crack in a circular bar subjected to thermal shock
      • v7.01.311: HPLA311 - Murakami 11.39. Circular crack in the center of a sphere subjected to a uniform temperature on the lips
      • v7.02.100: HPLP100 - Calculation of the energy return rate of a cracked plate in thermoelasticity
      • v7.02.101: HPLP101 - Thermoelastic cracked plate (plane stresses)
      • v7.02.300: HPLP300 - Plate with Young's modulus as a function of temperature
      • v7.02.310: HPLP310 — Biblio_35 Internal radial crack in a thick cylinder under pressure and thermal loading
      • v7.02.311: HPLP311 - Murakami 11.17 Fissure in the center of a thin rectangular plate obstructing uniform heat flow in an isotropic medium
      • v7.03.100: HPLV100 - Parallelepiped whose Young's modulus is a function of temperature
      • v7.03.101: HPLV101 - Homogenization of homogeneous material
      • v7.03.102: HPLV102 - Calculation of thermoelastic G in an infinite medium for a circular crack
      • v7.03.103: HPLV103 - Calculation of KI and 3D thermo-elastic G for a circular crack
      • v7.03.106: HPLV106 — Homogenized parameters of a hexagonal cell glass resin-fiber composite
      • v7.03.108: HPLV108 — Verification of the homogenized parameters of a pierced plate
      • v7.11.001: HSLS01 - Thin square plate subjected to a thermal gradient in thickness
      • v7.12.303: HSLA303 - Cylinder under pressure and thermal expansion
      • v7.14.100: EPICU01 - Order validation POST_K_BETA
      • v7.14.102: EPICU02 - Validation of the POST_K_BETA command in the case of an elliptical defect with a positive offset
      • v7.14.103: EPICU03 - Validation of the POST_K_BETA command in the case of a semi-elliptical defect.
      • v7.14.303: HSLV303 — Verification of the CALC_THERMECA_MULT operator on a hollow cylinder subjected to thermal shock
      • v7.14.304: HSLV304 - Cylinder under thermal loading
      • v7.15.100: FORMA02 - Practical work from the "Introduction" training: bent pipe under thermo-mechanical and dynamic stress
      • v7.16.100: HSLL100 — Bi-embedded multi-fiber beam subject to a temperature field
      • v7.20.100: HSNA100 - Drying a concrete enclosure wall
      • v7.20.101: FORMA30 - Thermoelastic hollow cylinder
      • v7.20.102: HSNA102 - Validation of drying laws on a cylindrical concrete test piece
      • v7.20.105: HSNA105 - Expansion of an infinite hollow cylinder taking into account heat dissipation due to mechanical deformations
      • v7.20.106: HSNA106 — Model META_LEMA_ANI: full cylinder in single pull with variable temperature
      • v7.22.100: HSNV100 - Thermoplasticity in simple traction
      • v7.22.101: HSNV101 - Thermo-plasticity and metallurgy decoupled in simple traction
      • v7.22.102: HSNV102 - Thermo-metallo-plasticity coupled with simple traction
      • v7.22.103: HSNV103 - Thermoplasticity and metallurgy in plane deformations
      • v7.22.104: HSNV104 - Thermoplasticity and metallurgy in plane deformations with work-hardening restoration
      • v7.22.105: HSNV105 - Traction-shear plate: elasto-viscoplasticity with metallurgy
      • v7.22.120: HSNV120 - Hyperelastic traction of a bar under thermal loading
      • v7.22.121: HSNV121 - Traction in large plastic deformations of a bar under thermal loading
      • v7.22.122: HSNV122 - Thermoplasticity and metallurgy in large deformations under simple traction
      • v7.22.123: HSNV123 - Thermo-metallo-mechanics EDGAR
      • v7.22.124: HSNV124 - Volume element under tension and variable temperature
      • v7.22.126: HSNV126 - Thermo-metallo-mechanics in simple traction
      • v7.22.127: HSNV127 — Traction-shear plate: viscoplasticity with isotropic work hardening
      • v7.22.128: HSNV128 — Traction-shear plate: viscoplasticity with kinematic work hardening
      • v7.22.129: HSNV129 - Compression-expansion test for the study of thermal coupling-cracking
      • v7.22.132: HSNV132 - X-FEM crack in thermo-elasticity
      • v7.22.133: HSNV133 - Thermoplastic traction in large deformations VMIS_ISOT_PUIS
      • v7.22.135: HSNV135 — Model META_LEMA_ANI: pressurized tube and variable temperature
      • v7.22.136: HSNV136 - Degeneration of the META_LEMA_ANI model into Norton's law: simple traction in large deformations
      • v7.22.137: FORMA41 - Practical work from the "Civil Engineering" training: taking into account withdrawals in the study of a 3-point flexure beam
      • v7.22.139: HSNV139 - Traction-shear plate: elasto-plasticity with metallurgy
      • v7.23.101: HSNS101 - Square plate with variable traction and temperature. Plane constraints integrated by the DE BORST method and a direct method.
      • v7.23.102: HSNS102 - Reinforced concrete plate with thermal loading
      • v7.30.100: WTNL100 - Consolidation of a saturated poro-elastic soil column (Terzaghi)
      • v7.30.101: WTNL101 — THMsaturé issue coupled
      • v7.30.102: WTNL102 - One-dimensional forced convection problem
      • v7.31.100: WTNV100 - Undrained triaxial test with model CJS (level 1)
      • v7.31.101: WTNV101 - Undrained triaxial test with the Eagle model and with hydraulic coupling
      • v7.31.102: WTNV102 - Undrained triaxial test with models VISC_MAXWELL and VISC_MAXWELL_MT
      • v7.31.103: WTNV103 — 3D modeling of unconstrained swelling with the inflEFlas model
      • v7.31.109: WTNV109 - Hydraulic and mechanical loading of a saturated porous medium
      • v7.31.111: WTNV111 — Heat flow on a saturated porous medium
      • v7.31.112: WTNV112 — Gravity flow in an unsaturated porous medium
      • v7.31.113: WTNV113 — Gravity flow in a saturated porous medium
      • v7.31.114: WTNV114 - Water flow on a saturated porous medium
      • v7.31.121: WTNV121 - Concrete wetting with a damage law
      • v7.31.122: WTNV122 - Undrained triaxial test with behavior models CAM_CLAY, MCC and CSSM
      • v7.31.123: WTNV123 - Triaxial fixed-suction test with the Barcelona model
      • v7.31.124: WTNV124 - Desaturation-consolidation test with the Barcelona model
      • v7.31.125: WTNV125 —Calculation of capillary rebalancing of a bi-material
      • v7.31.126: WTNV126 — Response to mixed saturation-consolidation paths with the Barcelona model
      • v7.31.127: WTNV127 —Desaturation of an airless porous medium (3D modelling_ THV)
      • v7.31.128: WTNV128 - Undrained triaxial test with the Hoek-Brown model modified to effective stresses
      • v7.31.129: WTNV129 - Undrained triaxial test with the Hoek-Brown model modified to total stresses
      • v7.31.130: WTNV130 - Heating a desaturated porous medium with dissolved air (3D)
      • v7.31.131: WTNV131 - Diffusion of air dissolved in water (3D)
      • v7.31.132: WTNV132 - Construction of a soil column with Hujeux's law
      • v7.31.133: WTNV133 — Undrained triaxial with Hujeux's law
      • v7.31.134: WTNV134 — Cyclic undrained triaxial with Hujeux's law
      • v7.31.135: WTNV135 - Drained triaxial test: models LETK, LKR and NLH_CSRM
      • v7.31.136: WTNV136 — 3D modeling of clay swelling with the INFELAS model
      • v7.31.137: WTNV137 - Drained triaxial test with model VISC_DRUC_PRAG
      • v7.31.138: WTNV138 - Undrained triaxial test with model VISC_DRUC_PRAG
      • v7.31.139: WTNV139 — Modeling a well dug in a transverse isotropic formation saturated with water
      • v7.31.140: WTNV140 - Anisotropic drained elastic triaxial test
      • v7.31.141: WTNV141 — Validation of an evolutionary load for a saturated hydromechanical problem
      • v7.31.142: WTNV142 - Undrained triaxial test with Mohr-Coulomb law
      • v7.31.143: WTNV143 - Application of distributed pressure on the lips of a XFEM crack in a hydro-mechanical model
      • v7.31.144: WTNV144 - Consolidation of a saturated and fractured poroelastic soil column: using the XFEM method
      • v7.31.145: WTNV145 - Application of distributed pressure on the lips of a XFEM crack junction for the hydromechanical case
      • v7.31.146: WTNV146 - Validation of a cohesive law model for the hydromechanical case coupled with XFEM
      • v7.31.147: WTNV147 - Hydromechanical coupling in a poro-elastic and fractured column: use of the XFEM method
      • v7.31.148: WTNV148 — Flow in an interface within a porous mass: use of the XFEM method
      • v7.31.149: WTNV149 — Contact at a junction of cohesive interfaces for the hydromechanical case
      • v7.31.150: WTNV150 — Flow in an interface junction within a porous mass: use of the XFEM method
      • v7.31.151: WTNV151 — Taking into account an unsaturated water exchange condition
      • v7.32.102: WTNP102 - Plane modeling of the heating of an element initially saturated with water. Taking into account steam.
      • v7.32.103: WTNP103 - Diffusion of air dissolved in water (plane)
      • v7.32.104: WTNP104 - Diffusion of dissolved air in water (plane THH2M)
      • v7.32.105: WTNP105 - Diffusion of dissolved air in water (plane HH2M)
      • v7.32.106: WTNP106 - Heating a desaturated porous medium with dissolved air
      • v7.32.107: WTNP107 — Modeling the drying of a concrete bar with different sorption isotherms
      • v7.32.110: WTNP110 - 2D saturated orthotropic flow
      • v7.32.112: WTNP112 - Restoring a column
      • v7.32.113: WTNP113 - Restoring an alveolus
      • v7.32.114: WTNP114 - Reference test case for calculating mechanical deformations
      • v7.32.115: WTNP115 — Desaturation of an airless porous medium on a unit cell
      • v7.32.116: WTNP116 - Consolidation issue for the permanent HM model
      • v7.32.117: WTNP117 — Capillary rebalancing of a bi-material described by Van-Genuchten Mualem laws
      • v7.32.118: WTNP118 - Gravity rebalancing of column saturation
      • v7.32.119: WTNP119 — Plane modeling of clay swelling with the INFELAS model
      • v7.32.120: WTNP120 - Appearance/disappearance of phase in a two-phase flow: Injection of gas into a bar saturated with pure water
      • v7.32.121: WTNP121 — Modeling of a bar saturated with linear compressible liquid (monophasic flow) subjected to a pressure shock
      • v7.32.122: WTNP122 - Modeling of a weakly non-linear bar saturated with compressible gas (monophasic flow) subjected to a pressure shock
      • v7.32.123: WTN123 - Appearance/disappearance of phase in a two-phase flow: Injection of gas around a gallery in a saturated domain
      • v7.32.124: WTNP124 — Liakopoulos test case: Drainage of a water column by the sole force of gravity
      • v7.32.125: WTNP125 - Depletion of a tank
      • v7.32.126: WTNP126 - Gas injection into a fractured porous mass
      • v7.32.127: WTNP127 — Modeling a water flow in a saturated bar, establishing a steady state
      • v7.32.128: WTNP128 — Concrete corner splitting test under fluid pressure
      • v7.32.129: WTNP129 — HM modeling of a bar saturated with compressible liquid
      • v7.33.100: WTNA100 —Calculation of capillary rebalancing of a bi-material
      • v7.33.101: WTNA101 — Undrained triaxial test with Drucker Prager softening behavior
      • v7.33.102: WTNA102 - Diffusion of dissolved air (axi)
      • v7.33.105: WTNA105 — Gas injection into a quasisaturated clay-type material described by Van-Genuchten/Mualem laws
      • v7.33.106: WTNA106 - Axisymmetric modeling of the heating of an element initially saturated with water. Taking into account steam.
      • v7.33.107: WTNA107 - Axisymmetric modeling of the heating of a water-saturated element
      • v7.33.109: WTNA109 - Desaturation of an airless porous medium on a unit cell
      • v7.33.110: WTNA110 — Axisymmetric modeling of clay swelling with the GONFElas model
      • v7.33.111: WTNA111 - Axisymmetric modeling of a joint with hydro-mechanical coupling
      • v7.33.112: WTNA112 — Thermal pressurization of a saturated, undrained cylindrical specimen
      • v7.33.113: WTNA113 — Modeling the injection of incompressible water into a saturated medium
      • v7.34.102: WDNP102 — Reflection and absorption of a compression wave along a poroelastic column
      • v7.35.100: WSLP100 - Desaturation test by oozing in an unsaturated porous sample
      • v7.36.101: WSNP101 — Modeling the drying of a concrete sample with the HYDR_TABBAL model
    • v8
      • v8.01.100: FDLV100 - Piston coupled to an incompressible fluid column
      • v8.01.101: FDLV101 - Two cylinders separated by an incompressible fluid
      • v8.01.102: FDLV102 - Mass added calculated on a generalized model
      • v8.01.103: FDLV103 - Concentric spheres separated by an incompressible fluid
      • v8.01.104: FDLV104 - Mass calculation added on a 3D generalized model
      • v8.01.105: FDLV105 - Mass added to an axisymmetric piston coupled to an incompressible fluid column
      • v8.01.106: FDLV106 - Calculation of damping added in annular flow
      • v8.01.107: FDLV107 - Stiffnesses added under annular flow
      • v8.01.108: FDLV108 - Calculation of damping added in annular flow (variable density)
      • v8.01.109: FDLV109 - Calculation of coefficients added in plane flow
      • v8.01.110: FDLV110 - Mass calculation added on modes obtained by substructuring
      • v8.01.111: FDLV111 - Absorption of a pressure wave in a fluid column
      • v8.01.113: FDLV113 - Pressure source in a ball full of fluid interacting with soil - fluid - structure
      • v8.01.114: FDLV114 - Seismic response of a cylindrical tank
      • v8.01.115: FDLV115 - Harmonic response of a visco-elastic ring in fluid-structure coupling for model reduction
      • v8.01.116: FDLV116 - Dynamic response of a dam with fluid-structure coupling
      • v8.03.100: FDNV100 - Water tank sloshing with elastic deformable wall
      • v8.21.100: ADLV100 - Piston coupled to a fluid column
      • v8.21.101: ADLV101 - Sloping and acoustic modes of a parallelepiped tank filled with water
      • v8.21.102: ADLS102 - Meridian fluidielastic oscillator
      • v8.21.200: FDLL200 - Embedded and free piping by fluid-structure beam
      • v8.21.301: ADLV301 — Cavity-plate coupling problem
      • v8.21.312: ADLV312 — Flexible cylindrical tank filled with water
      • v8.22.100: AHLV100 - Anechoic Output Waveguide
      • v8.22.101: AHLV101 - Anechoic Output Waveguide
      • v8.22.302: AHLV302 — Anechoic waveguide with vibro-absorbing input
      • v8.22.303: AHLV303 - Hollow sphere in linear elasticity immersed in an infinite fluid
    • v9
      • v9.01.100: SZLZ100 - Fatigue on an off-center cycle
      • v9.01.101: SZLZ101 - Damage calculation/Method RAINFLOW
      • v9.01.102: SZLZ102 - Fatigue with different counting methods
      • v9.01.103: SZLZ103 - Method RAINFLOW
      • v9.01.105: SZLZ105 - Counting cycles by RAINFLOW and calculating damage
      • v9.01.106: SZLZ106 - Fatigue under random stress
      • v9.01.107: SZLZ107 - Fatigue initiation criteria under multi-axial loads for a critical location of the structure
      • v9.01.108: SZLZ108 - Harm by the methods of TAHERI (TAHERI_MANSON and TAHERI_MIXTE)
      • v9.01.109: SZLZ109 - Lemaitre damage during post-treatment
      • v9.01.110: SZLZ110 - Generalized Lemaître damage in post-processing
      • v9.01.111: SZLZ111 - Lemaître-Sermage damage in post-treatment POST_FATIGUE
    • lists
      • all documents
    • d0
      • d0.00.00: Classification of Computational documentation
      • d0.00.01: Glossary of terms used to describe objects related to item catalogs.
      • d0.03.01: General architecture of the Code_Aster
      • d0.04.04: Brief description of basic calculation options
    • d1
      • d1.02.01: Software Engineering Workshop User Manual
      • d1.02.02: AGLA Administrator User Manual
      • d1.02.03: AGLA specification
      • d1.02.04: Understand the listing of the asverif/asrest tool
      • d1.02.05: Various syntaxes: .export files
      • d1.05.01: To debug Code_Aster
      • d1.06.01: Measuring performance (CPU) on Linux
      • d1.07.01: Measure the memory used by Code_Aster
    • d2
      • d2.01.01: Rules for extracting and restoring Code_Aster sources
      • d2.02.01: Programming rules
      • d2.03.01: Rules for writing catalogs
      • d2.05.01: Data Structuring Rules
      • d2.06.01: Use of JEVEUX
      • d2.07.01: Entry/Exit Rules
    • d4
      • d4.01.02: Some underground data structures
      • d4.01.03: Distributed data structures and parallelism
      • d4.02.01: sd_listr8 and sd_listis data structures
      • d4.02.02: sd_function data structures
      • d4.02.05: sd_table data structure
      • d4.02.06: Data structure FORMAT_IDEAS
      • d4.02.07: sd_l_table data structure
      • d4.03.05: Data Structure table_ TRC
      • d4.04.01: sd_cata_elem Data Structure
      • d4.05.01: sd_partition data structure
      • d4.06.01: sd_mesh, sd_neighborhood, sd_skeleton, and sd_grid data structures
      • d4.06.02: sd_ligrel and sd_model Data Structure
      • d4.06.03: sd_cara_elem data structures
      • d4.06.04: Data Structures Loads
      • d4.06.05: Data structures sd_map, sd_cham_no, sd_cham_elem, and sd_resuelem
      • d4.06.06: Data structures fiel_no_s and cham_elem_s
      • d4.06.07: Data structures sd_nume_ddl, sd_nume_equa, sd_storage**
      • d4.06.08: sd_result data structure
      • d4.06.09: sd_char_cine data structure
      • d4.06.10: sd_matr_asse Data Structure
      • d4.06.11: sd_solver data structure
      • d4.06.12: sd_l_charge Data Structure
      • d4.06.13: sd_liste_rela data structure
      • d4.06.14: sd_contact data structures
      • d4.06.15: critnl and critth data structures
      • d4.06.16: cabl_precont data structures
      • d4.06.17: list_inst data structure
      • d4.06.18: sd_mater and mater_code data structures
      • d4.06.19: sd_eigensolver data structure
      • d4.06.20: sd_matr_elem and sd_vect_elem data structure
      • d4.06.21: sd_partit data structures
      • d4.06.22: sd_cham_mater data structure
      • d4.06.23: sd_gfibre data structure
      • d4.06.24: sd_compor data structure
      • d4.06.30: sd_corresp_2_mailla and sd_ l _corresp_2_mailla data structures
      • d4.06.40: An example of a distributed matrix for PETSc
      • d4.07.02: sd_resu_dyna, sd_dyna_phys, and sd_dyna_gene data structures
      • d4.07.04: sd_modele_gene Data Structure
      • d4.07.05: sd_nume_ddl_gene, sd_vect_asse_gene, and sd_matr_asse_gene data structure
      • d4.08.01: sd_macr_elem_stat data structure
      • d4.08.02: sd_interfer_dyna_clas data structure
      • d4.08.03: sd_macr_elem_dyna data structure
      • d4.08.04: sd_mode_cycl data structure
      • d4.08.05: sd_proj_mesu data structure
      • d4.08.06: sd_mode_empi data structure
      • d4.09.01: sd_type_flui_stru data structure
      • d4.09.02: sd_melasflu Data Structure
      • d4.09.03: sd_spectrum Data Structure
      • d4.09.04: sd_interspectrum data structure
      • d4.10.01: Data structures FOND_FISS
      • d4.10.02: Data Structures linked to X- FEM
    • d5
      • d5.01.01: Place a new order
      • d5.01.02: Introduce a new macro command
      • d5.01.03: Introduce a new data structure
      • d5.02.01: Introduce a new quantity (or a new component)
      • d5.02.02: Introduce a new mesh type or reference element
      • d5.02.03: Introduce a new elementary calculation option
      • d5.02.04: Introduce new modeling in AFFE_MODELE
      • d5.02.05: Introduce a new elementary calculation
      • d5.03.02: Introduce new kinematic boundary conditions
      • d5.03.03: Introduce a new degree of freedom and associated boundary conditions
      • d5.04.01: Introduce new behavior
      • d5.04.02: Architecture of crystalline behaviors
      • d5.05.01: Introduce a new non-linear law localized in DYNA_VIBRA
    • d6
      • d6.00.01: List of Code_Aster utility routines
      • d6.00.02: List of precompilation macros
      • d6.01.01: Machine environment descriptor: ENVIMA
      • d6.02.01: Memory Management: JEVEUX
      • d6.03.01: Communication with the Execution Supervisor: routines GETXXX
      • d6.04.01: Message printing utilities
      • d6.04.02: Impressions led by the INFO order keyword (package INFXXX)
      • d6.04.03: How internationalization works
      • d6.05.01: Using SD_RESULTAT
      • d6.06.01: Using Tables data structures
      • d6.07.05: DISMOI and utilities for Data Structures
      • d6.10.01: Card Management Utilities
    • d7
      • d7.01.01: Develop a new order
      • d7.01.02: Develop a new macro command
      • d7.01.03: Develop a new option
    • d8
      • d8.00.00: Presentation of the documentary system
      • d8.00.01: Document Writing Instructions RST
    • d9
      • d9.02.01: Code_Aster Supervisor Maintenance
      • d9.02.02: Memory manager development and maintenance documentation JEVEUX
      • d9.02.03: Description of routine CALCUL
      • d9.02.04: Storage description JEVEUX in HDF format
      • d9.02.05: Parallel error handling MPI
      • d9.03.02: Implementing the multifrontal method MULT_FRONT
      • d9.05.01: Implementing STAT_NON_LINE and DYNA_NON_LINE
      • d9.05.03: Architecture THM. Integration of equilibrium equations
      • d9.05.06: Implementation of the "major landslides with X- FEM" approach
      • d9.07.01: Computer description of IMPR_RESU
      • d9.07.02: Computer description of LIRE_RESU
      • d9.07.03: File Format Description GIBI
      • d9.08.01: Computer description of CALC_ESSAI
      • d9.08.03: Computer description of CALC_MISS
      • d9.08.04: Introduce new features to CALC_EUROPLEXUS
    • lists
      • all documents
    • su1
      • su1.02.01: Europlexus module user manual
      • su1.04.01: User manual for modeling and calculating pipes
    • su4
      • su4.01.01: Compute Cluster User Manual CRONOS
      • su4.01.02: Graphical access to computing resources through a VPN connection
    • sv1
      • sv1.01.01: Viewing prints in MED format
      • sv1.01.02: AsterStudy module validation
      • sv1.01.11: Stanley tool
      • sv1.02.01: Module EUROPLEXUS from salome_meca
      • sv1.06.13: Business tool validation notice MEDCONVERTER
      • sv1.06.14: Business tool validation notice MAC3_Maillage
      • sv1.11.01: DataAnalytics module validation
      • sv1.12.01: Validation of the Mac3chute business tool
      • sv1.13.01: Validation of the Bride business tool from the AsterStudy module
      • sv1.14.01: Graphical validation notice of the "Civil Master" module
      • sv1.15.01: Piping Fracture graphics module validation notice
    • sv3
      • sv3.01.01: Tool ASTK
    • sv4
      • sv4.02.01: Recipe instructions from salome_meca