Verification and validation ========================== Test cases --------- The references of the test cases and associated documentation are given in the following table. .. list-table:: Cas-tests et documentations associées. *-**Test case reference** - **Documentation reference** - **Description** *-*ssnv160g* - [v6.04.160] - Isotropic compression test *-*ssnv202c* - [v6.04.202] - Oedometric compression test *-*wtnv122d* - [v7.31.122] - Undrained triaxial compression test *-*comp012h* - [v6.07.112] - Compatibility test with command CALC_GEO_MECA Examples of answers to the material point -------------------------------------- The following three figures show some answers obtained using the executable MTest (answers to the hardware point): * Isotropic compression test; * Isotropic tensile test; * Triaxial compression tests for several confinement stresses. The model parameters used in these simulations are grouped together in the table below. .. list-table:: Paramètres du modèle simulé. *-**Effect** - **Name** - **Definition** - **Symbol** - **Value** * - Isotropic nonlinear elasticity - | *BulkModulus* | *ShearModulus* | *SwellingIndex* - | Compressibility module | Shear module | Elastic nonlinearity index - |:math: `K` |:math: `\ mu` |:math: `\ kappa` - | 160 MPa | 100 MPa | 50 * - Initial elasticity domain - | *initCritPress* | *critstateSlope* | *TensileYieldStress* - | Initial critical pressure | Critical state slope | Isotropic tensile strength - |:math: `p_ {c0} ` |:math: `M` |:math: `\ sigma_0` - | 1 MPa | 1 | 10 kPa * - Kinematic-isotropic work hardening - | *IncoplastIndex* - | Plastic incompressibility index - |:math: `\ beta` - | 50 .. figure:: images/compression_isotrope_MCC.svg :align: center :width: 960 :height: 360 Isotropic compression test driven by mean stress :math:`\sigma_m`. In the load phase, the response is elastic non-linear (:math:`Ip=0`) up to :math:`-\sigma_m=2p_{c0}+\sigma_0=2.01` MPa, then irreversible (:math:`Ip=1`). The work hardening is then positive. The discharge from :math:`-\sigma_m=10` MPa to zero is elastic non-linear (:math:`Ip=0`). .. figure:: images/traction_isotrope_MCC.svg :align: center :width: 960 :height: 360 Isotropic tensile test driven by vertical deformation :math:`\epsilon_{zz}`. After the elastic load phase, the stress saturates at :math:`\sigma_m=\sigma_0=10` kPa, without showing any positive or negative work hardening. It should be noted that the nonlinearity of the elasticity is imperceptible. The expression for constraint :eq:`expression_contrainte` explains it by condition :math:`\sigma_m\ll K/\kappa`, a situation encountered in this load with the parameters of the simulated model. .. figure:: images/compression_triaxiale_MCC.svg :align: center :width: 960 :height: 360 Triaxial compression tests with multiple confinement stresses :math:`-\sigma_{xx}=-\sigma_{yy}`. Equivalent stress :math:`\sigma_{eq}` has negative work hardening at the weakest confinements and positive work hardening at the strongest. In parallel, the evolution of volume plastic deformation :math:`\xi=\mathrm{tr}(\boldsymbol{\epsilon}^p)` goes from a regime of dilatance (:math:`\dot{\xi}>0`) to contraction (:math:`\dot{\xi}<0`). It should be noted that the first loading phase at equivalent stress :math:`\sigma_{eq}=0` corresponds to confinement with :math:`-\sigma_{xx}=-\sigma_{yy}=-\sigma_{zz}`.