Digital integration ===================== Unknowns and equations of the nonlinear system ---------------------------------------------- The model is integrated implicitly (@ DSL Implicit) via the Mfront tool. The "numerical" internal variables make up the vector .. image:: images/Shape55.gif .. _RefSchema_Shape55.gif: . In the case where both mechanisms are active, i.e. .. image:: images/Shape56.gif .. _RefSchema_Shape56.gif: and .. image:: images/Shape57.gif .. _RefSchema_Shape57.gif: at the end of the elastic prediction phase (@Predictor), the equations constitutive of the non-linear system to be solved at the moment .. image:: images/Shape58.gif .. _RefSchema_Shape58.gif: during the correction phase are, .. image:: images/Shape59.gif .. _RefSchema_Shape59.gif: (3.1) The non-linear system is also solved in the case where only one of the two mechanisms is activated at the end of the prediction phase, i.e. .. image:: images/Shape60.gif .. _RefSchema_Shape60.gif: or .. image:: images/Shape61.gif .. _RefSchema_Shape61.gif: . In the rest of the document, we will detail only the terms deriving from the system (); the particular cases for which .. image:: images/Shape62.gif .. _RefSchema_Shape62.gif: and .. image:: images/Shape63.gif .. _RefSchema_Shape63.gif: can be easily deduced from () by taking some null terms. **Note:** if the user takes .. image:: images/Shape64.gif .. _RefSchema_Shape64.gif: , the viscoplastic mechanism is deactivated. Flow directions ------------------------ The flow directions associated with .. image:: images/Shape65.gif .. _RefSchema_Shape65.gif: , .. image:: images/Shape66.gif .. _RefSchema_Shape66.gif: , .. image:: images/Shape67.gif .. _RefSchema_Shape67.gif: , and .. image:: images/Shape68.gif .. _RefSchema_Shape68.gif: are respectively given by, .. image:: images/Shape69.gif .. _RefSchema_Shape69.gif: (3.2) with, .. image:: images/Shape70.gif .. _RefSchema_Shape70.gif: (3.3) Tangent operator ----------------- Tangent operator expression ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The stress tensor .. image:: images/Shape71.gif .. _RefSchema_Shape71.gif: unto .. image:: images/Shape72.gif .. _RefSchema_Shape72.gif: is assumed to be a function of .. image:: images/Shape73.gif .. _RefSchema_Shape73.gif: and .. image:: images/Shape74.gif .. _RefSchema_Shape74.gif: , .. image:: images/Shape75.gif .. _RefSchema_Shape75.gif: (3.4) The coherent tangent operator is given by, .. image:: images/Shape76.gif .. _RefSchema_Shape76.gif: (3.5) Furthermore, through differentiation, .. image:: images/Shape77.gif .. _RefSchema_Shape77.gif: (3.6) .. image:: images/Shape78.gif .. _RefSchema_Shape78.gif: is the Jacobian matrix of the nonlinear system to be solved. Finally, the tangent operator is expressed, .. image:: images/Shape79.gif .. _RefSchema_Shape79.gif: (3.7) Equation () can be simplified in the particular case where, 1 — .. image:: images/Shape80.gif .. _RefSchema_Shape80.gif: only appears in .. image:: images/Shape81.gif .. _RefSchema_Shape81.gif: (deformation tensor partition), and 2 — .. image:: images/Shape82.gif .. _RefSchema_Shape82.gif: only depends on .. image:: images/Shape83.gif .. _RefSchema_Shape83.gif: via Hooke's law. In this case, .. image:: images/Shape84.gif .. _RefSchema_Shape84.gif: takes the following form, .. image:: images/Shape85.gif .. _RefSchema_Shape85.gif: (3.8) And the product .. image:: images/Shape86.gif .. _RefSchema_Shape86.gif: only involves the first six columns of .. image:: images/Shape87.gif .. _RefSchema_Shape87.gif: ; sub-matrix that we note .. image:: images/Shape88.gif .. _RefSchema_Shape88.gif: . Furthermore, Hooke's law gives, .. image:: images/Shape89.gif .. _RefSchema_Shape89.gif: (3.9) .. image:: images/Shape90.gif .. _RefSchema_Shape90.gif: is obtained from .. image:: images/Shape91.gif .. _RefSchema_Shape91.gif: using function MFrontgetPartialJacobianInvert. Expression of the Jacobian matrix of the system ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The Jacobian matrix of the system .. image:: images/Shape92.gif .. _RefSchema_Shape92.gif: , .. image:: images/Shape93.gif .. _RefSchema_Shape93.gif: , is given by, .. image:: images/Shape94.gif .. _RefSchema_Shape94.gif: (3.10) In MFront, this matrix can be obtained by numerical disturbance — @Algorithm NewtonRaphson_NumericalJacobian — or analytically, as is the case here. The components of .. image:: images/Shape95.gif .. _RefSchema_Shape95.gif: are detailed below in case both mechanisms are activated. First line of the Jacobienne ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. image:: images/Shape96.gif .. _RefSchema_Shape96.gif: (3.11) Expressions for derivatives of .. image:: images/Shape97.gif .. _RefSchema_Shape97.gif: are, .. image:: images/Shape98.gif .. _RefSchema_Shape98.gif: (3.12) with, .. image:: images/Shape99.gif .. _RefSchema_Shape99.gif: (3.13) Expressions for derivatives of .. image:: images/Shape100.gif .. _RefSchema_Shape100.gif: are, .. image:: images/Shape101.gif .. _RefSchema_Shape101.gif: (3.14) with, .. image:: images/Shape102.gif .. _RefSchema_Shape102.gif: (3.15) Expressions for derivatives of .. image:: images/Shape103.gif .. _RefSchema_Shape103.gif: are, .. image:: images/Shape104.gif .. _RefSchema_Shape104.gif: (3.16) with, .. image:: images/Shape105.gif .. _RefSchema_Shape105.gif: (3.17) Second line of the Jacobian ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. image:: images/Shape106.gif .. _RefSchema_Shape106.gif: (3.18) Expressions for derivatives of .. image:: images/Shape107.gif .. _RefSchema_Shape107.gif: are, .. image:: images/Shape108.gif .. _RefSchema_Shape108.gif: (3.19) Third line of the Jacobian ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. image:: images/Shape109.gif .. _RefSchema_Shape109.gif: (3.20) Expressions for derivatives of .. image:: images/Shape110.gif .. _RefSchema_Shape110.gif: are, .. image:: images/Shape111.gif .. _RefSchema_Shape111.gif: (3.21) Fourth line of the Jacobian ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. image:: images/Shape112.gif .. _RefSchema_Shape112.gif: (3.22) Expressions for derivatives of .. image:: images/Shape113.gif .. _RefSchema_Shape113.gif: are, .. image:: images/Shape114.gif .. _RefSchema_Shape114.gif: (3.23) Fifth line of the Jacobian ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. image:: images/Shape115.gif .. _RefSchema_Shape115.gif: (3.24) Expressions for derivatives of .. image:: images/Shape116.gif .. _RefSchema_Shape116.gif: are, .. image:: images/Shape117.gif .. _RefSchema_Shape117.gif: (3.25) Sixth line of the Jacobian ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. image:: images/Shape118.gif .. _RefSchema_Shape118.gif: (3.26) Expressions of derivatives of .. image:: images/Shape119.gif .. _RefSchema_Shape119.gif: are, .. image:: images/Shape120.gif .. _RefSchema_Shape120.gif: (3.27)