Notations ========= The notations and sign conventions used are those of the mechanics of continuous media. A bold character represents a tensor of order two and an openwork character represents a tensor of order four. For a tensor of order two :math:`\boldsymbol{a}`, its decomposition between deviatory and volume parts, respectively noted :math:`\boldsymbol{a}_d` and :math:`a_v`, is written as follows: .. math:: \ boldsymbol {a} =\ boldsymbol {a} _d +\ frac {a_v} {3}\ boldsymbol {I},\ quad\ text {with}\ quad a_v =\ boldsymbol {I} =\ boldsymbol {I}:\ boldsymbol {I}:\ boldsymbol {a} _d=0 where we note :math:`\boldsymbol{I}=\boldsymbol{\delta}` the second-order identity tensor. We also write :math:`a_m=\cfrac{a_v}{3}`. For a tensor of order two :math:`\boldsymbol{a}` of the same nature as a deformation, we denote its equivalent von Mises norm by :math:`a_{eq}=\sqrt{\cfrac{2}{3}\boldsymbol{a}_d:\boldsymbol{a}_d}`. For a tensor of order two :math:`\boldsymbol{A}` of the same nature as a constraint, It says :math:`A_{eq}=\sqrt{\cfrac{3}{2}\boldsymbol{A}_d:\boldsymbol{A}_d}`. The notations defined in :numref:`r7.01.44-table_notations_latines` and :numref:`r7.01.44-table_notations_grecques` will be progressively supplemented by other symbols during the presentation of the CSSM model. .. _r7.01.44-table_notations_latines: .. list-table:: Notations (lettres latines). * - :math:`\mathbb{C}` - Isotropic linear elasticity tensor * - :math:`f, F_i` - Plasticity criteria * - :math:`\boldsymbol{I}` - Second order identity operating on vectors * - :math:`\mathbb{I}` - Fourth-order identity operating on symmetric second-order tensors * - :math:`\mathbb{J}` - Spotlight on the space of hydrostatic tensors (:math:`\mathbb{J}:\boldsymbol{a}=\cfrac{a_v}{3}\boldsymbol{I}`) * - :math:`\mathbb{K}` - Projector on the space of symmetric tensors with zero trace (:math:`\mathbb{K}:\boldsymbol{a}=(\mathbb{I}-\mathbb{J}):\boldsymbol{a}=\boldsymbol{a}_d`) .. _r7.01.44-table_notations_grecques: .. list-table:: Notations (alphabet grec). * - :math:`\boldsymbol{\alpha}_i,\boldsymbol{\varepsilon}^p,\xi,\gamma` - Internal variables * - :math:`\boldsymbol{\varepsilon}` - Total deformation tensor * - :math:`\varepsilon_v` - Total volume deformation * - :math:`\dot{\lambda},\dot{\lambda}_i` - Plastic multipliers respectively associated with the plasticity criteria :math:`f, F_i` * - :math:`\boldsymbol{\sigma}` - Stress tensor * - :math:`\sigma_{eq}` - Equivalent von Mises stress * - :math:`\sigma_m` - Average stress * - :math:`\psi` - Energy potential (volume density)