2. Ratings#

2.1. Generalities#

The deformations are positive in extension and the stresses are positive for tensile states.

Notion

Description

\({I}_{1}\text{=}\text{tr}(\sigma )\)

First constraint invariant

\(s\text{=}\sigma \text{-}\frac{\text{tr}(\sigma )}{3}I\)

Constraint deviator

\({s}_{\text{II}}\text{=}\sqrt{s\text{.}s}\)

Second invariant of the deviatory stress tensor

\(e\text{=}\varepsilon -\frac{\text{tr}(\varepsilon )}{3}I\)

Deformation deviator

\({\varepsilon }_{\nu }\text{=}\text{tr}(\varepsilon )\)

Trace of deformations: volume deformation

\({\varepsilon }^{p}\)

Plastic deformation tensor

\({\varepsilon }_{{}_{\nu }}^{p}\text{=}\text{tr}({\varepsilon }^{p})\)

Variation in plastic volume

\(\delta {\gamma }^{p}\text{=}\sqrt{\frac{2}{3}d{e}^{p}:d{e}^{p}}\)

Cumulative plastic shear deformation

\({\mathrm{\sigma }}_{1}\)

Major main constraint

\({\mathrm{\sigma }}_{3}\)

Minor primary constraint (\({\mathrm{\sigma }}_{1}<{\mathrm{\sigma }}_{2}<{\mathrm{\sigma }}_{3}\))

\(H\)

Hooke matrix

\(\mu\)

Lamé coefficient

2.2. Model parameters#

Notion

Description

\(\mathrm{\gamma }\)

Work hardening parameter (defined in paragraph 3.2.3)

\(S\)

Represents the state of damage and fracturing of the rock

\(m\)

Model smoothing parameter

\({\mathrm{\sigma }}_{c}\)

Strength of healthy rock without any damage

\({\mathrm{\gamma }}^{\text{rup}}\)

Work hardening parameter corresponding to material breakage

\({\mathrm{\gamma }}^{\text{res}}\)

Work hardening parameter corresponding to the start of residual resistance

\(({\mathrm{S\sigma }}_{c}^{2}{)}^{\text{rup}}\)

Product value \(S{\sigma }_{c}^{2}\) at breakpoint reached in \({\mathrm{\gamma }}^{\text{rup}}\)

\(({\mathrm{S\sigma }}_{c}^{2}{)}^{\text{end}}\)

Product value \(S{\sigma }_{c}^{2}\) at damage initiation \((\mathrm{\gamma }=0)\)

\(({\mathrm{m\sigma }}_{c}{)}^{\text{rup}}\)

Product value \(m{\sigma }_{c}\) at breakpoint reached in \({\mathrm{\gamma }}^{\text{rup}}\)

\(({\mathrm{m\sigma }}_{c}{)}^{\text{end}}\)

Product value \(m{\sigma }_{c}\) at damage initiation \((\mathrm{\gamma }=0)\)

\(E\)

Young’s module

\(\mathrm{\nu }\)

Poisson’s ratio

\(\mathrm{\beta }\)

Characterize residual resistance

\({\phi }^{\text{end}}\)

Friction angle at damage initiation \((\mathrm{\gamma }=0)\): optional parameter taken to be zero by default

\({\phi }^{\text{rup}}\)

Friction angle at break reached in \({\mathrm{\gamma }}^{\text{rup}}\)

\({\phi }^{\text{res}}\)

Friction angle at residual resistance reached in \({\mathrm{\gamma }}^{\text{res}}\)

\(\mathrm{\alpha }\)

Model parameter characterizing the post-fracture behavior of the material