The internal variables ====================== For the IT implementation, we retained the following 4 internal variables: V1: the cumulative plastic deviatory deformation ------------------------------------------------ The work hardening variable :math:`{\gamma }^{p}` is proportional to the second invariant of the deviatory deformation tensor. :math:`{\gamma }^{p}=\sqrt{\frac{2}{3}{e}_{\text{ij}}^{p}{e}_{\text{ij}}^{p}}` with :math:`{e}_{\text{ij}}^{p}={\varepsilon }_{\text{ij}}^{p}-\frac{\text{tr}({\varepsilon }_{\text{ij}}^{p})}{3}{\delta }_{\text{ij}}` V2: the cumulative plastic volume deformation ------------------------------------------------ Plastic volume deformation is defined by the relationship presented in paragraph [:ref:`§3.2.4 <§3.2.4>`] on the law of evolution of the plastic mechanism: :math:`\dot{{\varepsilon }_{v}^{p}}=\dot{\lambda }G` V3: the domains of rock behavior --------------------------------------------- Five behavior domains, numbered from 0 to 4 (cf. figure), are identified to allow a relatively simple representation of the state of damage of the rock, from intact rock to rock in residual state. These domains are a function of the cumulative plastic deviatory deformation :math:`{\gamma }^{p}` and the stress state. Each domain number increment defines the transition to a higher damage domain. * If the deviator is less than 70% of the peak deviator, then the material is in the 0 range; * If not: * If :math:`{\gamma }^{p}=0` then the material is in domain 1; 1. If :math:`0<{\gamma }^{p}<{\gamma }^{e}` then the material is in domain 2; * If :math:`{\gamma }_{e}<{\gamma }^{p}<{\gamma }_{\text{ult}}` then the material is in domain 3; * .. image:: images/Object_260.svg :width: 215 :height: 148 .. _RefImage_Object_260.svg: If :math:`{\gamma }^{p}>{\gamma }_{\text{ult}}` then the material is in domain 4. .. image:: images/Object_262.svg :width: 215 :height: 148 .. _RefImage_Object_262.svg: V4: the state of plasticization ----------------------------- It is an internal indicator of *Code_Aster*. It is 0 if the gauss point is in elastic charge or under discharge, and is equal to 1 if the gauss point is in plastic charge.