4. Results#
The order produces all the fields of correctors, solutions of thermal problems linear and then linear elasticity performed on the base cell.
The homogenized coefficients in linear thermal and in linear thermoelasticity are given. according to the axes of the Cartesian frame of reference of the mesh of the base cell.
The directions connections are as follows:
4.1. Three-dimensional linear thermal homogenization#
For the homogenization in three-dimensional linear thermal, we calculate with the three fields of correctors the homogenized linear thermal characteristics:
orthotropic thermal conductivity: « LAMBDA_L », « « , « LAMBDA_T », « LAMBDA_N »,
of equivalent calorific volume: « RHO_CP ».
4.2. Homogenization in three-dimensional linear thermoelasticity#
For homogenization in three-dimensional linear thermoelasticity we calculate with the six + one fields of correctors homogenized linear thermoelastic characteristics:
orthotropic elasticity (9 independent coefficients that define elastic flexibility):
E_L
,E_L
,E_N
, « NU_LT," NU_LN ",
, » NU_TN « , » « , » « ,G_LT
,G_LT
,G_LT
,G_TN
,G_TN
,orthotropic elasticity (9 coefficients independent of the elastic stiffness tensor):
A1111
,A2222
,A3333", ``A1122
,A1122
,A1133
,A1133
,A1133
,A2233
,A2233
,A2233
,A2233
,A2233
,A2233
,A2233
,A2233
,A2233
,A2233
,A2233
,A2233
,A2233
, ``A223of orthotropic thermal expansion: « ALPHA_L », « « , « ALPHA_T », « ALPHA_N »
of equivalent density: « RHO ».
Finally, we calculate a scalar « ISOTRANS » which makes it possible to be sure, if it is zero, of the case where we obtains transverse isotropy (for example in case of hexagonal symmetry of the base cell) where we only have 5 independent elastic coefficients left.
4.3. Homogenization and linear elasticity of Love-Kirchhoff plates in membrane-flexure#
For the homogenization in linear elasticity of Love-Kirchhoff plates in membrane-flexure, we Calculate the thermoelastic characteristics with the three + three + one fields of correctors linear homogenized in membrane-flexure:
orthotropic elasticity in membranes (4 independent coefficients that define elastic stiffness): « MEMB_L », « MEMB_T », « MEMB_LT », « « , « , » MEMB_G_LT « ,
orthotropic elasticity in bending (4 independent coefficients that define elastic stiffness): « FLEX_L », « FLEX_T », « FLEX_LT », « « , « , » FLEX_G_LT « ,
orthotropic elasticity in transverse shear (2 independent coefficients that define elastic stiffness): « CISA_L », « CISA_T »,
orthotropic thermal expansion in membranes: « ALPHA_L », « ALPHA_T »,
of equivalent density: « RHO ».