Examples ======== You can consult the test cases: .. csv-table:: "name", "title", "documentation" "HPLV105 ", "Homogenized parameters of GV tube plates", "[:ref:`V7.03.105 `]" "HPLV106 ", "Homogenized parameters of a fibreglass/resin composite", "[:ref:`V7.03.106 `]" "HPLV107 ", "Homogenized parameters of N4 tube plates on a whole cell", "[:ref:`V7.03.107 `]" "HPLV108 ", "Homogenized parameters of a pierced plate with unitary materials and comparison", "[:ref:`V7.03.108 `]" We can also perform a trivial check with test case HPLV101a entitled "*Homogenization of a homogeneous material*" [:ref:`V7.03.101 `], in thermal: isotropic stationary and isotropic in elasticity. laminated elastic plate --------------------------- We consider a material laminated in 3 layers of different thicknesses of isotropic materials. On note in particular the thicknesses of the successive layers: :math:`{e}_{K}={z}_{K}-{z}_{K-1}`, see :ref:`r5.03.37-fig-stratifie`. The layers are assumed to be symmetric with respect to the sheet. medium, so as to cancel the flexion-membrane coupling. In this case, the base cell has any periodicity on the directions of the tangential plane :math:`(X,Y)`. Therefore, the fields of membrane correctors :math:`{\chi }_{11}^{m}`, :math:`{\chi }_{22}^{m}` are finely piecewise dependent on the position :math:`Z` in the thickness of the plate, while the concealer in Membrane :math:`{\chi }_{12}^{m}` associated with distortion sucks everywhere. And the fields of flexure correctors :math:`{\chi }_{11}^{f}`, :math:`{\chi }_{22}^{f}` are parabolic by pieces in :math:`Z` in the thickness of the plate, while the concealer in Flexion :math:`{\chi }_{12}^{f}` sucks everywhere. .. figure:: images/100088E8000069D500003780FC28E5379CFA9C1E.svg :name: r5.03.37-fig-stratified :align: center :width: 197 :height: 104 Diagram of a laminated plate with three symmetric layers The analytical resolution of elementary problems in membrane and then in flexure provides the analytical expressions of the following homogenized linear elastic characteristics: .. math:: \ begin {array} {c} {A} _ {\ text {name} 1111}} ^ {\ text {memb}} = {A} _ {\ text {name} 2222}} ^ {\ text {memb}} = \ sum _ {K} {e} _ {K}\\,\ frac {{E} _ {K}} {1- {\nu} _ {K} ^ {2}}\\ {A} _ {\ text {name} 1122}} ^ {\ text {memb}} = \ sum _ {K} {e} _ {K}\\,\ frac {{\nu} _ {K} {E} _ {K}} {1- {\nu} _ {K} _ {K}} ^ {2}}\\ {A} _ {\ text {name} 1212}} ^ {\ text {memb}} = \ sum _ {K} {e} _ {K}\\,\ frac {{E} _ {K}} {2 (1+ {\nu}} _ {K})} \ end {array} .. math:: \ begin {array} {c} {A} _ {\ text {name} 1111}} ^ {\ text {flex}} = {A} _ {\ text {home} 2222}} ^ {\ text {flex}} = \ frac {1} {3}\ sum_ {K} ({z} {K} _ {K} _ {K} ^ {3} - {z} _ {K-1} ^ {3})\,\ frac {{E} _ {K} _ {K} _ {K} ^ {2}}\\ {A} _ {\ text {home} 1122}} ^ {\ text {flex}} = \ frac {1} {3}\ sum _ {K} ({z}} ({z} _ {K} _ {1}} ^ {3})\,\ frac {{\nu} _ {K} {K} {E} {E} _ {E} _ {E} _ {K}} {K} {2}} _ {K} {2}}\\ {A} _ {\ text {home} 1212}} ^ {\ text {flex}} = \ frac {1} {3}\ sum _ {K} ({z}} ({z} _ {K} _ {K} {3})\,\ frac {{E} _ {K}} {K}} {2 (1+ {\nu} _ {3})})} \ end {array} This analysis can also be carried out using transverse shear.