2. Ongoing relationship#
We assume the hypothesis of small disturbances and an isotropic environment. Maxwell’s model is represented by a purely viscous shock absorber and a serial Hookean spring. This model takes into account volume viscosity and deviatory viscosity. The equations are then simply:
with:
\({\mathrm{\epsilon }}_{v}\): volume deformation
\({\mathrm{\sigma }}_{m}\): the average effective stress \(\mathrm{\sigma }=\frac{1}{3}\text{Tr}\left(\mathrm{\sigma }\right)I\)
\({e}_{\mathit{ij}}\): the coefficients of the deviatory stress tensor \({e}_{\mathit{ij}}={\mathrm{\epsilon }}_{\mathit{ij}}-\frac{1}{3}{\mathrm{\epsilon }}_{v}{\mathrm{\delta }}_{\mathit{ij}}\)
\({s}_{\mathit{ij}}\): the coefficients of the effective deviatory stress tensor \({s}_{\mathit{ij}}={\mathrm{\sigma }}_{\mathit{ij}}-{\mathrm{\sigma }}_{m}{\mathrm{\delta }}_{\mathit{ij}}\)
\(K\): the isostatic modulus of elasticity
\(G\): the shear modulus
\({\mathrm{\eta }}_{v}\): volume viscosity
\({\mathrm{\eta }}_{d}\): deviatoric viscosity