Continuous model ============== Behavioral equations ------------------------- Maxwell's model is simply written: .. math:: :label: eq-1 {\ mathrm {\ sigma}} ^ {v} =k (\ mathrm {\ epsilon}} - {\ mathrm {\ epsilon}} ^ {v})\ text {;} {\ mathrm {\ sigma}} =k\ mathrm {\ sigma}} = k\ mathrm {\ epsilon}}} {\ mathrm {\ sigma}}} _ {sigma}} _ {sigma}} _ {v} =k\ mathrm {\ epsilon}}} where :math:`{\sigma }^{v}` designates the viscous stress tensor and :math:`{\dot{\epsilon }}^{v}` the viscous deformation tensor associated with the damper. We can eliminate the viscous deformation to obtain the equation for the evolution of the viscous stress: .. math:: :label: eq-2 {\ dot {\ mathrm {\ sigma}}}} ^ {v}} ^ {v} +\ frac {1} {\ mathrm {\ tau}} {\ mathrm {\ sigma}}} ^ {v} =k\ dot {\ dot {\ mathrm {\ epsilon}} The initial state by default corresponds to zero viscous stress. Definition of energies ----------------------- The energy volume stored in the spring of the viscous branch is equal to: .. math:: :label: eq-3 \ text {VISCELAS} =\ frac {1} {2k} {\ mathrm {\ sigma}} ^ {v}\ mathrm {:} {\ mathrm {\ sigma}}} ^ {v} As for the energy volume dissipated by viscosity, it is written as: .. math:: : label: eq-4 \ text {VISCDISS} =\ frac {1} {k\ mathrm {\ tau}} {\ int} _ {0} ^ {t} {\ mathrm {\ sigma}}} ^ {v}\ mathrm {::} {\ mathrm {\ tau}} {\ mathrm {\ tau}} {\ int} _ {0} ^ {v}} ^ {sigma}} ^ {v}} ^ {sigma}} ^ {v}} ^ {sigma}} ^ {sigma}} ^ {v}} ^ {sigma}} ^ {sigma}} ^ {v}} ^ {sigma}} ^ {sigma}} ^ {