2. Notations#

We will note by:

\(\mathrm{Id}\)

identity matrix

\(\text{tr}A\)

trace of tensor \(A\)

\({A}^{T}\)

transposed from the \(A\) tensor

\(\text{det}A\)

determinant of \(A\)

\(\langle X\rangle\)

positive part of*X*

\(\tilde{A}\)

deviatory part of the \(A\) tensor defined by \(\tilde{A}=A-(\frac{1}{3}\text{tr}A)\text{Id}\)

:

doubly contracted product: \(A:B=\sum _{i,j}{A}_{\text{ij}}{B}_{\text{ij}}=\text{tr}({\text{AB}}^{T})\)

\(\otimes\)

tensor product: \((A\otimes B{)}_{\text{ijkl}}={A}_{\text{ij}}{B}_{\text{kl}}\)

\({A}_{\text{eq}}\)

equivalent von Mises value defined by \({A}_{\text{eq}}=\sqrt{\frac{3}{2}\tilde{A}:\tilde{A}}\)

\({\nabla }_{X}A\)

gradient: \({\nabla }_{X}A=\frac{\partial A}{\partial X}\)

\({\text{div}}_{x}A\)

discrepancy: \(({\text{div}}_{x}A{)}_{i}=\sum _{j}\frac{\partial {A}_{\text{ij}}}{\partial {x}_{j}}\)

\(\lambda ,\mu ,E,\nu ,K\)

isotropic elasticity coefficients

\({\sigma }_{y}\)

elastic limit

\(\alpha\)

thermal expansion coefficient

\(T\)

temperature

\({T}_{\text{ref}}\)

reference temperature

Moreover, in the context of time discretization, all the quantities evaluated at the previous instant are indexed by \({}^{-}\), the quantities evaluated at the instant \(t+\Delta t\) are not indexed and the increments are designated by \(\Delta\). We thus have:

\(\Delta Q=Q-{Q}^{-}\)