2. Ratings#
We will note by:
\(\mathrm{Id}\) |
identity matrix |
\(\text{tr}A\) |
A tensor trace |
\({A}^{T}\) |
transpose of the A tensor |
\(\text{det}A\) |
determinant of A |
\(\tilde{A}\) |
deviatory part of the A tensor defined by \(\tilde{A}=A-(\frac{1}{3}\text{tr}A)\text{Id}\) |
\({A}_{H}\) |
hydrostatic part of the A tensor defined by \({A}_{H}=\frac{\text{tr}A}{3}\) |
: |
doubly contracted product: \(A:B=\sum _{i,j}{A}_{\text{ij}}{B}_{\text{ij}}=\text{tr}({\text{AB}}^{T})\) |
\(\otimes\) |
tensor product: \((A\otimes B{)}_{\text{ijkl}}={A}_{\text{ij}}{B}_{\text{kl}}\) |
\({A}_{\text{eq}}\) |
Von Mises equivalent value defined by \({A}_{\text{eq}}=\sqrt{\frac{3}{2}\tilde{A}:\tilde{A}}\) |
\({\nabla }_{X}A\) |
gradient: \({\nabla }_{X}A=\frac{\partial A}{\partial X}\) |
\(\lambda ,\mu ,E,\nu ,K\) |
isotropic elasticity coefficients |
\({\sigma }_{y}\) |
elastic limit |
\(\alpha\) |
thermal expansion coefficient |
\(T\) |
temperature |
\({T}_{\text{ref}}\) |
reference temperature |
Moreover, in the context of time discretization, all the quantities evaluated at the previous instant are indexed by \({}^{-}\), the quantities evaluated at the instant \(t+\Delta t\) are not indexed and the increments are designated by \(\Delta\). We thus have:
\(\Delta Q=Q-{Q}^{-}\)