Bibliography ==== .. [bib1] P. MIALON, Elements of analysis and numerical resolution of elastoplasticity relationships. EDF - Bulletin of the Directorate of Studies and Research - Series C - Series C - No. 3 1986, p. 57 - 89. .. [bib2] E. LORENTZ, J.M. PROIX, I. VAUTIER, I., F., F. VOLDOIRE, F. WAECKEL "Introduction to thermo-plasticity in the *Code_Aster*", Note EDF/DER /HI ‑74/96/013 Description of document versions .. _RefNumPara__2971_396419602: **Relation** VMIS_ISOT_TRAC: **integration complements** The implicit discretization of the behavioral relationship leads to solving an equation in :math:`\Delta p` (see § :ref:`3.3 `): :math:`{\sigma }_{\mathrm{eq}}^{e}-3\mu \Delta p -R({p}^{-}+\Delta p )=0` The equation is solved exactly by taking advantage of piecewise linearity. We first examine whether the solution could be outside the limits of the discretization points of the curve :math:`R(p)`, that is to say, if :math:`p\ge {p}_{n}` is a possible solution. For this: **** .. image:: images/10000200000002AA000001319C082B10FD2BE6A7.png :width: 3.3283in :height: 1.5925in .. _RefImage_10000200000002AA000001319C082B10FD2BE6A7.png: If :math:`{\sigma }_{\mathrm{eq}}^{e}+3\mu ({p}^{-}-{p}_{n})-{\sigma }_{n}\ge 0`, then we are in the following situation: * if the extension to the right is linear then: :math:`\Delta p=\frac{{\sigma }_{\text{eq}}^{e}-{H}_{n-1}}{{\alpha }_{n-1}+3\mu }` with: :math:`{\alpha }_{n-1}=\frac{{\sigma }_{n}-{\sigma }_{n-1}}{{p}_{n}-{p}_{n-1}}\text{}{H}_{n-1}={\sigma }_{n-1}+{\alpha }_{n-1}\left({p}^{-}-{p}_{n-1}\right)` * if the extension is constant: :math:`\Delta p=\frac{{\sigma }_{\mathit{eq}}^{e}-{\sigma }_{n}}{3\mu }` * otherwise, the solution :math:`p` is to be found in the :math:`[{p}_{i},{p}_{i+1}]` interval such as: :math:`{\sigma }_{i+1}>{\sigma }_{\text{eq}}^{e}+3\mu \left({p}^{-}-{p}_{i+1}\right)` and :math:`{\sigma }_{i}\le {\sigma }_{\text{eq}}^{e}+3\mu \left({p}^{-}-{p}_{i}\right)` so the solution is: :math:`\Delta p=\frac{{\sigma }_{\text{eq}}^{e}-{H}_{i}}{{\alpha }_{i}+3\mu }\text{et}{p}^{-}+\Delta p\in \left[{p}_{i},{p}_{i+1}\right]` with: :math:`{\alpha }_{i}=\frac{{\sigma }_{i+1}-{\sigma }_{i}}{{p}_{i+1}-{p}_{i}}\text{;}{H}_{i}={\sigma }_{i}+{\alpha }_{i}\left({p}^{-}-{p}_{i}\right)\text{pour}i=1\text{à}n-1` **Isotropic work hardening under plane stress** In this case, the system to be solved includes one more equation: :math:`\Delta {\sigma }_{33}=0` .We then obtain the following system: :math:`\{\begin{array}{c}2\mu \Delta \tilde{\varepsilon }-\Delta \tilde{\sigma }=\frac{3}{2}2\mu \Delta p\frac{{\tilde{\sigma }}^{-}+\Delta \tilde{\sigma }}{{({\sigma }^{-}+\Delta \sigma )}_{\text{eq}}}\\ \text{tr}\Delta \sigma =3K\text{tr}\Delta \varepsilon \\ {({\sigma }^{-}+\Delta \sigma )}_{\text{eq}}-R({p}^{-}+\Delta p)\le 0\\ \Delta p=0\text{si}{({\sigma }^{-}+\Delta \sigma )}_{\text{eq}}