Principle of the method ====================== Equations to be solved -------------------- We consider solution :math:`(u,s)` of a linear elastic problem verifying: * the equilibrium equations: :math:`\mathrm{\{}\begin{array}{c}\text{Lu}\mathrm{=}q\text{dans}\Omega \\ {\sigma }_{\text{ij}}{n}_{j}\mathrm{=}{\stackrel{ˉ}{t}}_{i}\text{sur}{\Gamma }_{t}\end{array}` with :math:`L={}^{t}\mathrm{BDB}` elasticity operator * compatibility equations: :math:`\mathrm{\{}\begin{array}{c}\varepsilon \mathrm{=}\text{Bu}\\ u\mathrm{=}\stackrel{ˉ}{u}\text{sur}{\Gamma }_{u}\end{array}` with :math:`\Gamma ={\Gamma }_{u}\cup {\Gamma }_{t}` * the law of behavior: :math:`\sigma =D\varepsilon` The problem discretized by finite elements consists in finding the :math:`({u}_{h},{\sigma }_{h})` solution of: .. _RefEquation 2.1-1: :math:`{u}_{h}=N{\stackrel{ˉ}{u}}_{h}` eq 2.1-1 checking :math:`K{\stackrel{ˉ}{u}}_{h}=\text{f}` with :math:`K=\underset{\Omega }{\int }{}^{t}\text{}(\mathrm{BN})D(\mathrm{BN})d\Omega` :math:`\text{f}=\underset{\Omega }{\int }{}^{t}\text{}\mathrm{Nq}d\Omega +\underset{{G}_{t}}{\int }{}^{t}\text{}N\stackrel{ˉ}{t}\mathrm{dG}` where: :math:`{\stackrel{ˉ}{\text{u}}}_{h}` represents the nodal unknowns of displacement :math:`N` the associated form functions The constraints are calculated from the displacements by the relationship: .. _RefEquation 2.1-2: :math:`{\sigma }_{h}={\mathrm{DBu}}_{h}` eq 2.1-2 Error estimator and effectiveness index -------------------------------------------- .. csv-table:: "We note", ":math:`e=u-{u}_{h}` ", "the error on the trips" "", ":math:`{e}_{s}=s-{s}_{h}` ", "the constraint error" The energy norm for error :math:`e` is written as: :math:`\parallel \text{e}\parallel ={(\underset{\Omega }{\int }{}^{t}\text{}\mathrm{eLe}d\Omega )}^{1/2}` in the case of elasticity .. _RefEquation 2.2-1: :math:`={(\underset{\Omega }{\int }{}^{t}\text{}{e}_{\sigma }{D}^{\text{-}1}{e}_{\sigma }d\Omega )}^{1/2}` eq 2.2-1 The overall error above is broken down into the following sum of elementary errors: :math:`{\parallel e\parallel }^{2}=\sum _{i=1}^{N}{\parallel e\parallel }_{i}^{2}` .. csv-table:: "where", ":math:`N` is the total number of items." "", ":math:`{\parallel e\parallel }_{i}` represents the local error indicator on the :math:`i` element." The aim is to estimate the exact error using equation [:ref:`éq 2.2-1 <éq 2.2-1>`] formulated in constraints. The basic idea of the method is to build a new constraint field noted :math:`{\sigma }^{\text{*}}` from :math:`{\sigma }_{h}` and such as: :math:`{e}_{\sigma }\approx {e}_{\sigma }^{\text{*}}={\sigma }^{\text{*}}-{\sigma }_{h}` The error estimator will then be written as: :math:`{}^{0}\text{}\parallel e\parallel ={(\underset{\Omega }{\int }{}^{t}\text{}{e}_{\sigma }^{\text{*}}{D}^{\text{-}1}{e}_{\sigma }^{\text{*}}d\Omega )}^{1/2}` The quality of the estimator is measured by the quantity :math:`\mathrm{\theta }`, called the estimator effectiveness index: :math:`\mathrm{\theta }=\frac{{}^{0}\text{}\parallel e\parallel }{\parallel e\parallel }` An error estimator is said to be asymptotically accurate if :math:`\mathrm{\theta }\to 1` when :math:`\parallel e\parallel \to 0` (or when :math:`h\to 0`), which means that the estimated error will always converge to the exact error when the error decreases. Obviously, the reliability of :math:`{}^{0}\text{}\parallel e\parallel` depends on the "quality" of :math:`{\sigma }^{\text{*}}`. The two versions of the ZHU - ZIENKIEWICZ estimator differ at this level (see [:ref:`§3 <§3>`]). Construction of an asymptotically accurate estimator ---------------------------------------- The characterization of such an estimator is provided by the following theorem (see [:ref:`bib 2 `]). **Theorem** If :math:`\parallel {e}^{\text{*}}\parallel =\parallel {u-u}^{\text{*}}\parallel` is the error norm of the reconstructed solution, then the error estimator :math:`{}^{0}\text{}\parallel e\parallel` defined earlier is asymptotically accurate If :math:`\frac{\parallel {e}^{\text{*}}\parallel }{\parallel e\parallel }\to 0` when :math:`\parallel e\parallel \to 0` This condition is met if the convergence rate with :math:`h` of :math:`\parallel {e}^{\text{*}}\parallel` is greater than that of :math:`\parallel e\parallel`. Typically, if we assume that the exact error of the finite element approximation converges to :math:`\parallel e\parallel =0({h}^{p})` and the error of the reconstructed solution in :math:`\parallel {e}^{\text{*}}\parallel =0({h}^{p\text{+}\alpha })` with :math:`\alpha >0` then a simple calculation gives: :math:`1-0({h}^{\alpha })\le \mathrm{\theta }\le 1+0({h}^{\alpha })` and so :math:`\mathrm{\theta }\to 1` when :math:`h\to 0`