4. Presentation of the META_LEMA_ANI model#

Subsequently, the equations of the model are presented in a « generic » coordinate system (1,2,3) which represents either the Cartesian coordinate system (Ox, Oy, Oz), or the cylindrical coordinate system \((1\mathrm{=}{e}_{r},2\mathrm{=}{e}_{\theta }\mathrm{,3}\mathrm{=}z)\) associated with the shaft sheath \(z\).

4.1. Metallurgical phases#

From a purely metallurgical point of view, Zircaloy has two phases, the cold phase \(\mathrm{\alpha }\) and the hot phase \(\mathrm{\beta }\), which can be present simultaneously, while respecting the condition

_images/Object_25.svg

, where

_images/Object_26.svg

and

_images/Object_27.svg

represent the proportions of phase \(\alpha\) and phase \(\beta\), respectively.

From a mechanical point of view, for the material parameters of the mechanical model, three phases are considered: phase 1 = pure phase \(\mathrm{\alpha }\), phase 2 = mixture \(\mathrm{\alpha }\mathrm{\beta }\) and phase 3 = pure phase \(\mathrm{\beta }\). This is why, we see three indices appear later in the equations. The three phases are distinguished in the following way:

  • If \(0\le {Z}_{\mathrm{\alpha }}\le \mathrm{0,01}\) then phase 3 is phase \(\mathrm{\beta }\)

  • If \(\mathrm{0,01}\le {Z}_{\mathrm{\alpha }}\le \mathrm{0,1}\) then phase 3 is phase \(\mathrm{\beta }\) and phase 2 is mixed phase \(\mathrm{\alpha }\mathrm{\beta }\) (linear law of mixtures)

  • If \(\mathrm{0,1}\le {Z}_{\mathrm{\alpha }}\le \mathrm{0,9}\) then phase 2 is mixed phase \(\mathrm{\alpha }\mathrm{\beta }\)

  • If \(\mathrm{0,9}\le {Z}_{\mathrm{\alpha }}\le \mathrm{0,99}\) then phase 1 is phase \(\mathrm{\alpha }\) and phase 2 is the mixed phase \(\mathrm{\alpha }\mathrm{\beta }\) (linear law of mixtures)

  • If \(\mathrm{0,99}\le {Z}_{\mathrm{\alpha }}\le \mathrm{1,00}\) then phase 1 is phase \(\mathrm{\alpha }\)

4.2. Model equations#

The deformations are divided into elastic \({\mathrm{\epsilon }}^{e}\), thermal \({\mathrm{\epsilon }}^{\mathit{th}}\) and viscous \({\mathrm{\epsilon }}^{v}\) parts:

(4.1)#\[ \ mathrm {\ epsilon} = {\ mathrm {\ epsilon}}} ^ {e} + {\ mathrm {\ epsilon}} ^ {\ mathit {th}}\ mathit {th}}\ mathit {Id} + {\ mathrm {\ epsilon}} ^ {v}}\]

For the stress-deformation relationship: we separate the deviatoric part from the spherical part:

(4.2)#\[ \ mathrm {\ sigma} =\ stackrel {~} {\ mathrm {\ sigma}} +\ frac {1} {3} {\ mathrm {\ sigma}}} _ {\ mathit {pp}} {\ mathit {pp}}}\ mathit {Id}\]

And we have:

\[\]

: label: eq-4

stackrel {~} {mathrm {sigma}}} =2mathrm {mu}left (stackrel {~} {mathrm {epsilon}}} - {mathrm {epsilon}}} - {mathrm {epsilon}}} ^ {v}right)

With the flow law of viscous deformation such as:

\[\]

: label: eq-5

{dot {mathrm {epsilon}}}} ^ {v}} =dot {p}frac {Mmathrm {:}mathrm {sigma}}} {{mathrm {sigma}}} _ {mathit {eq}}}

with the equivalent stress in the Hill sense defined by:

(4.3)#\[ {\ mathrm {\ sigma}} _ {\ mathit {eq}} =\ sqrt {\ mathrm {\ sigma}\ mathrm {:} M\ mathrm {:}\ mathrm {:}\ mathrm {\ sigma}}\]

The Hill anisotropy matrix, \(M\), is of the form:

(4.4)#\[\begin{split} {M} _ {\ left ({e} _ {r}, {r}, {e} _ {\ mathrm {\ theta}}}, {e} _ {z}\ right)} =\ left [\ begin {array} {cccc} {{r}} {r}} {r}} {r} {r}} {r} {r}} {r} {r}}, {r} _ {r} _ {r} _ {12}} & {M} _ {22} & {M} _ {23} & 0& 0& 0& 0& 0& 0\\ {M} _ {23} & {M} _ {33} & 0& 0& 0\ & 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0} & 0\ 0& 0& 0& {M} _ {55} & 0\\ 0& 0& 0& 0& 0& {M} _ {66}\ end {array}\ right]\end{split}\]

With:

(4.5)#\[ \ {\ begin {array} {c} {M} _ {22} + {M} _ {11} + {M} _ {12} + {M} _ {12} + {M} _ {22} + {M} _ {22} + {M} _ {22} + {M} _ {22} + {M} _ {22} + {M} _ {22} + {M} _ {22} + {M} _ {22} + {M} _ {22} + {M} _ {22} + {M} _ {22} + {M} _ {22} + {M} _ {22} + {M} _ {22} + {M} _ {22} + {M} _ {22} + {M} _ {22} + {M} _ {22} + {M}\]

In the isotropic case, we have:

(4.6)#\[ {M} _ {11} = {M} _ {22} = {M} _ {33} =1 {M} _ {12} = {M} _ {13} = {M} _ {23} =-\ frac {1} {2} {M} _ {44} = {M} _ {55} = {M} _ {66} =\ frac {3} {4}\]

The terms of this matrix depend on the phase distribution, with:

(4.7)#\[\begin{split} M=\ {\ begin {array} {c} {M} {M} ^ {3}\ text {si} 3}\ text {si} 0\ le {\ begin {array}}\ le\ mathrm {0.01}\ hfill\\ {M} ^ {3}}\ text {si} {3}\ text {si} 0\ text {si} 0\ le {Z} _ {2} = {Z} _ {2} = {Z} _ {2} = {Z} _ {2} = {Z} _ {2} = {Z} _ {2} = {Z} _ {2} = {Z} _ {2} = {Z} _ {2} = {Z} mathrm {\ alpha}}) {M} ^ {3}\ text {si}\ text {si}\ mathrm {0.01}\ le {Z} _ {\ mathrm {\ alpha}}\ le\ mathrm {0.99}\ hfill\\ {3}\ hfill\\ {M}}\ hfill\\ {M} ^ {M} ^ {1}\ text {\ alpha}\ the {Z}}}\ le {Z} _ {\ mathrm {0.99}\ the {Z} _ {\ mathrm {0.99}}\ the {Z} _ {\ mathrm {0.99}\ hfill\\ {M}}\ hfill\\ {M} ^ {M} ^ {1} ^ {1}\ text {\ alpha}\ the {Z}}\ le 1\ hfill\ end {array}\end{split}\]

The equivalent deformation rate is given by:

(4.8)#\[ \ dot {p} = {\ left (\ frac {{\ mathrm {\ sigma}}} _ {\ mathit {eq}}}} {{\ mathit {ap}}} ^ {m}}\ right)}}\ right)} ^ {n} {e} ^ {-Q/T}\]

Or equivalently:

(4.9)#\[ {\ mathrm {\ sigma}} _ {\ mathit {eq}}} =a {({e} ^ {Q/T})} ^ {1/n} {p} ^ {m} {\ dot {p}} {\ dot {p}}}} ^ {p}}} ^ {p}}} ^ {p}} {p} {m} {\ dot {p}}} {\ dot {p}}} {\ dot {p}}}} {\ dot {p}}}} {\ dot {p}}}} {\ dot {p}}}} {\ dot {p}}}} {\]

We apply the law of mixtures on viscous stress \({\mathrm{\sigma }}_{v}\):

(4.10)#\[ {\ mathrm {\ sigma}} _ {\ mathit {eq}}} = {\ mathrm {\ sigma}} _ {v} =\ sum _ {i=1} ^ {3} {f} _ {i} _ {i} ({Z}}} ({Z}} _ {Z} _ {Z} _ {z} _ {v, i}) {\ mathrm {\ sigma}} _ {v, i}\]

With:

(4.11)#\[\begin{split} {f} _ {1} =\ {\ begin {array} {c} 0\ text {si} 0\ text {si} 0\ le {Z} _ {\ mathrm {\ alpha}}\ le\ mathrm {0.9}\ hfill\\ fill\\\ frac {\ frac {{Z}} _ {\ mathrm {\ alpha}}}\ text {si}\ mathrm {0.9}\ le {Z} _ {\ mathrm {\ alpha}}\ le\ mathrm {0.99}\ hfill\\ 1\ text {si}\ mathrm {0.99}\ le {Z} _ {\ mathrm {\ alpha}}\ le 1\ hfill\ end {array}\ le 1\ hfill\ end {array} {f} _ {3} =\ {\ begin {array} {c} 0\ text {si} 0\ the {Z} _ {\ mathrm {\ alpha}}\ le\ mathrm {0.01}\ hfill\\\ frac {\\ frac {\\ frac {\ mathrm {0.1}} - {Z} _ {\ mathrm {\ alpha}}} {\ mathrm {0.01}}\ hfill\\\ frac {\\ frac {\ frac {\ frac {\ frac {0.1} - {Z} _ {\ mathrm {\ alpha}}}} {\ mathrm {0.09}}\ text {si}\ mathrm {0.01}\ le {Z} _ {\ mathrm {\ alpha}}\ le\ mathrm {0.1}\ hfill\\ 1\ text {si}\ mathrm {0.1}\ mathrm {0.1}\ le {Z} _ {\ mathrm {\ alpha}}\ le 1\ hfill\ end {array}\ {f} _ {2} =\ {\ begin {array} {c} 0\ text {si} 0\ the {Z} _ {\ mathrm {\ alpha}}\ le\ mathrm {0.01}\ hfill\\ 1-\ frac {\ mathrm {0.1}} - {Z} _ {\ mathrm {\ alpha}}} {\ mathrm {0.01}}\ hfill\\ 1-\ frac {\ frac {\ frac {0.1}} - {Z} _ {\ mathrm {\ alpha}}} {\ mathrm {0.01}}\ hfill\\ 1-\ frac {\ frac {\ frac {0.1}} - {Z} _ {\ mathrm {\ alpha}}} {\ mathrm {0.01}}\ hfill\ text {si}\ mathrm {0.01}\ le {Z} _ {\ mathrm {\ alpha}}\ le\ mathrm {0.1}\ hfill\\ 1\ text {si}\ mathrm {0.1}\ mathrm {0.1}\ le {Z}\ le {Z} _ {\ mathrm {\ alpha}}\ le\ mathrm {\ alpha}}\ le\ mathrm {\ alpha}}\ le\ mathrm {\ alpha}}\ le\ mathrm {\ alpha}}\ le\ mathrm {\ alpha}}\ le\ mathrm {\ 1-\ frac {{Z} _ {\ mathrm {\ alpha}} -\ mathrm {0.9}} {\ mathrm {0.9}}\ text {si}\ mathrm {0.9}\ the {Z} _ {\ mathrm {\ alpha}}\ the\ mathrm {\ alpha}}\ the\ mathrm {\ alpha}}\ the\ mathrm {\ alpha}}\ the\ mathrm {\ alpha}}\ the\ mathrm {\ alpha}}\ the\ mathrm {\ alpha}}\ the\ mathrm {\ alpha}}\ the\ mathrm {\ alpha}}\ the\ mathrm {\ alpha}}\ the\ mathrm {\ alpha}}\ the\ mathrm {\ alpha}}\ the\ mathrm {\ alpha}}\ the {\ alpha}}\ le 1\ hfill\ end {array}\end{split}\]

where \(\left({a}_{i},{Q}_{i},{n}_{i},{m}_{i}\right)\) are material parameters associated with the three metallurgical phases.