2. Notations#

We will note by:

\(\mathrm{Id}\)

identity matrix

\(\text{tr}A\)

trace of tensor \(A\)

\({A}^{T}\)

transposed from the \(A\) tensor

\(\text{det}A\)

determinant of \(A\)

\(\langle X\rangle\)

positive part of \(X\)

\(\tilde{A}\)

deviatory part of the \(A\) tensor defined by \(\tilde{A}=A-(\frac{1}{3}\text{tr}A)\text{Id}\)

\(:\)

doubly contracted product: \(A:B=\sum _{i,j}{A}_{\text{ij}}{B}_{\text{ij}}=\text{tr}({\text{AB}}^{T})\)

\(Ä\)

tensor product: \((\mathrm{AÄB}{)}_{\text{ijkl}}={A}_{\text{ij}}{B}_{\text{kl}}\)

\({A}_{\text{eq}}\)

equivalent von Mises value defined by \({A}_{\text{eq}}=\sqrt{\frac{3}{2}\tilde{A}:\tilde{A}}\)

\({Ñ}_{X}A\)

gradient: \({Ñ}_{X}A=\frac{\partial A}{\partial X}\)

\({\text{div}}_{x}A\)

discrepancy: \(({\text{div}}_{x}A{)}_{i}=\sum _{j}\frac{\partial {A}_{\text{ij}}}{\partial {x}_{j}}\)

\(\lambda\), \(\mu\)

Lamé coefficients: \(\lambda =\frac{\mathrm{E\nu }}{(1+\nu )(1-\mathrm{2\nu })}\), \(m=\frac{E}{2(1+\nu )}\)

\(E\)

Young’s module

\(\nu\)

Poisson’s ratio

\(K\)

compression stiffness modulus: \(\mathrm{3K}=\mathrm{3\lambda }+\mathrm{2m}=\frac{E}{(1-\mathrm{2\nu })}\)

T

temperature

\({T}_{\text{ref}}\)

reference temperature

\({Z}_{g}\)

austenite proportion

\({Z}_{i}\)

proportion of the four phases \(\alpha\): ferrite, pearlite, bainite and martensite

Moreover, in the context of time discretization, all the quantities evaluated at the previous instant are indexed by \({}^{-}\), the quantities evaluated at the instant \(t+\Delta t\) are not indexed and the increments are designated by \(\Delta\). We thus have:

\(\Delta Q=Q-{Q}^{-}\)