2. Notations#
We will note by:
\(\mathrm{Id}\) |
identity matrix |
\(\text{tr}A\) |
trace of tensor \(A\) |
\({A}^{T}\) |
transposed from the \(A\) tensor |
\(\text{det}A\) |
determinant of \(A\) |
\(\langle X\rangle\) |
positive part of \(X\) |
\(\tilde{A}\) |
deviatory part of the \(A\) tensor defined by \(\tilde{A}=A-(\frac{1}{3}\text{tr}A)\text{Id}\) |
\(:\) |
doubly contracted product: \(A:B=\sum _{i,j}{A}_{\text{ij}}{B}_{\text{ij}}=\text{tr}({\text{AB}}^{T})\) |
\(Ä\) |
tensor product: \((\mathrm{AÄB}{)}_{\text{ijkl}}={A}_{\text{ij}}{B}_{\text{kl}}\) |
\({A}_{\text{eq}}\) |
equivalent von Mises value defined by \({A}_{\text{eq}}=\sqrt{\frac{3}{2}\tilde{A}:\tilde{A}}\) |
\({Ñ}_{X}A\) |
gradient: \({Ñ}_{X}A=\frac{\partial A}{\partial X}\) |
\({\text{div}}_{x}A\) |
discrepancy: \(({\text{div}}_{x}A{)}_{i}=\sum _{j}\frac{\partial {A}_{\text{ij}}}{\partial {x}_{j}}\) |
\(\lambda\), \(\mu\) |
Lamé coefficients: \(\lambda =\frac{\mathrm{E\nu }}{(1+\nu )(1-\mathrm{2\nu })}\), \(m=\frac{E}{2(1+\nu )}\) |
\(E\) |
Young’s module |
\(\nu\) |
Poisson’s ratio |
\(K\) |
compression stiffness modulus: \(\mathrm{3K}=\mathrm{3\lambda }+\mathrm{2m}=\frac{E}{(1-\mathrm{2\nu })}\) |
T |
temperature |
\({T}_{\text{ref}}\) |
reference temperature |
\({Z}_{g}\) |
austenite proportion |
\({Z}_{i}\) |
proportion of the four phases \(\alpha\): ferrite, pearlite, bainite and martensite |
Moreover, in the context of time discretization, all the quantities evaluated at the previous instant are indexed by \({}^{-}\), the quantities evaluated at the instant \(t+\Delta t\) are not indexed and the increments are designated by \(\Delta\). We thus have:
\(\Delta Q=Q-{Q}^{-}\)