3. Pressure formulation#

3.1. Mathematical expression of the problem#

The standard procedure for solving the problem with classical isoparametric finite elements is used. We assume the solution of the problem is fairly regular, \(p\in {H}^{2}\left(\Omega \right)\). We multiply the Helmholtz equation () without a source term \(s\) by a test function \(\mathrm{\varphi }\). We integrate on \(\mathrm{\Omega }\) and we use Green’s formula. According to (), the border \(\partial \Omega\) of the domain \(\Omega\) is subdivided into two zones, a zone with imposed vibratory speed, \(\partial {\Omega }_{v}\) and a zone with imposed acoustic impedance, \(\partial {\Omega }_{Z}\). The equation obtained can be rewritten in the form:

(3.1)#\[ {\ int} _ {\ mathrm {\ Omega}}\ mathrm {grad} (p)\ cdot\ mathrm {grad} (\ mathrm {\ varphi})\ mathit {dV} - {\ int} - {\ int} _ {\ int} _ {\ int} _ {\ int} _ {\ int} _ {\ int} _ {\ mathrm {\ omega}}\ frac {\ mathrm {\ omega}}} ^ {2}} {{c}} ^ {2}} {{c}} ^ {2}} {{c}} ^ {2}} {{c}} ^ {2}} {{c}} ^ {2}} {{c}} ^ {2}}}} p\ mathrm {\ varphi}\ mathit {dV} +j {\ int} +j {\ int} _ {\ mathrm {\ omega}} _ {Z}}\ frac {{\ mathrm {\ rho}}} _ {0}\ mathrm {\ rho}}} _ {0}\ mathrm {\ omega}} {Z} p\ mathrm {\ varphi}}\ frac {{\ mathrm {\ s} +j {\ rho}} _ {0}\ mathrm {\ omega}} {Z}}\ mathrm {\ varphi}}\ frac {{\ mathrm {\ rho}}}\ frac {{\ mathrm {\ rho}}} {\ rho}} int} _ {\ partial {\ mathrm {\ omega}}} _ {\ omega}} _ {\ mathrm {\ rho}} _ {0}\ mathrm {\ omega} {V} {V} _ {n} _ {n}\ mathrm {\ omega}} _ {n}\ mathrm {\ varphi}}\ mathit {dS} =0\]

where \(\mathit{dV}\) represents a differential volume element in \(\Omega\) and \(\mathit{dS}\) represents a surface element out of \(\partial \Omega\). The particle vibratory speed is then determined by:

(3.2)#\[ \ mathrm {v} =\ frac {j} {{\ mathrm {\ rho}} _ {0}\ mathrm {\ omega}}}\ mathrm {grad} (p)\]

3.2. Finite element discretization#

In the case of classical isoparametric finite elements, the elementary integrals are \({\mathrm{K}}^{e}\), \({\mathrm{M}}^{e}\),, \({\mathrm{C}}^{e}\) and \({\mathrm{S}}^{e}\) according to the decomposition indicated by () (\({\mathrm{K}}^{e}\) is the « stiffness » matrix, \({\mathrm{M}}^{e}\) the « mass » matrix, \({C}^{e}\) the damping matrix, the damping matrix and \({\mathrm{S}}^{e}\) the source vector). Two of them come from volume integrals, the other two are the result of integrals respectively on a vibrating surface and on a surface with imposed impedance. We will assume that the global coordinates of an element can be written using the data of \(m\) elementary form functions \({H}_{i}\):

(3.3)#\[ {\ mathit {OM}} ^ {e} = {\ sum} = {\ sum} _ {i=1} ^ {m} {N} _ {i} {\ mathit {OM}}} _ {i}} _ {i} ^ {e}\]

In addition, basic functions \({N}_{i}\) are given to describe elementary sound pressure. The pressure inside an element can be written as:

(3.4)#\[ {p} ^ {e} (x, y, z) = {\ sum} _ {i=1} ^ {m} {N} _ {i} {p} _ {i} {p} _ {i} ^ {e}\]

Where \({p}_{i}^{e}\) is the sound pressure at node \(i\) of element \(e\). In the case of isoparametric finite elements, the base functions \({N}_{i}\) are equal to the functions of the form \({H}_{i}\). For each element in the field, the finite element problem in sound pressure is written:

(3.5)#\[ \ left ({\ mathrm {K}}} ^ {e}} - {\ mathrm {\ omega}}} ^ {2} {\ mathrm {M}} ^ {e} +j\ mathrm {\ omega}} {\ omega} {\ omega} {\ omega} {\ omega} {\ omega} {\ omega} {\ omega} {\ mathrm {C}}} {\ mathrm {C}}}} ^ {e}\ right) {p} ^ {e} =-j\ mathrm {\ omega} {\ omega} {\ omega} {\ omega} {\ omega} {\ mathrm {C}}} {\ mathrm {C}}}} ^ {e}\ right) {p} ^ {e} =-j\ mathrm {}} ^ {e}\]

Where \({p}^{e}\) is the column vector of the nodal values of the sound pressure on the element.

3.2.1. The « stiffness » matrix#

The « stiffness » matrix \({\mathrm{K}}^{e}\) corresponds to the calculation of the first term of (), i.e.:

(3.6)#\[ {\ int} _ {{\ mathrm {\ omega}}} ^ {e}}}\ left (\ mathrm {grad} (p)\ cdot\ mathrm {grad} (\ mathrm {\ varphi})}} ^ {e}}}\ left (\ mathrm {\ varphi})\ right)\ mathit {dV}\]

It corresponds to the kinetic energy of the acoustic fluid. It accepts as a general term:

(3.7)#\[ {K} _ {\ mathit {ij}}} ^ {e}} = {\ int} = {\ int} _ {\ omega} ^ {e}}\ left (\nabla {N} _ {i}\nabla {N}}\nabla {N} _ {N} _ {j}\ right)\ mathrm {.} \ mathit {dV}\]

Note:

because of the choice of pressure as the main variable and the second derivation in time, the first term of () corresponds to kinetic energy. For a practical reason it is nevertheless called a « stiffness » matrix .

3.2.2. The « mass » matrix#

The « mass » matrix \({\mathrm{M}}^{e}\) corresponds to the calculation of the second term of (), i.e.:

(3.8)#\[ {M} _ {\ mathit {ij}}} ^ {e}} = {\ int} = {\ int} _ {\ omega} ^ {e}}\ frac {1} {{c} ^ {2}} p\ varphi\ mathit {dV}\]

It corresponds to the compressibility energy of the acoustic fluid. It accepts as a general term:

(3.9)#\[ {M} _ {\ mathit {ij}}} ^ {e}} = {\ int} = {\ int} _ {\ omega} ^ {e}}\ frac {1} {{c} ^ {2}} {N}} {N}} {N} _ {j}\ mathrm {.}} {N} \ mathit {dV}\]

Note 1:

Because of the choice of pressure as the main variable and the second derivation in time, * the second term of () corresponds to elastic energy. For practical reasons, it is nevertheless called a « mass » matrix. .

Note2:

In the case of propagation in a hysteretic viscoacoustic environment, the speed of the sound \(c\) that occurs in () is a complex number.

3.2.3. The amortization matrix#

The damping matrix \({\mathrm{C}}^{e}\) corresponds to the calculation of the third term of (), i.e.:

(3.10)#\[ {C} _ {\ mathit {ij}} ^ {e}} = {\ int} = {\ int} _ {\ partial {\ omega} _ {Z} ^ {e}}\ frac {{\ rho}} _ {0}} _ {0}}} {0}}} {Z} {Z} p\ varphi\ mathit {dS}\]

It accepts as a general term, on the borders concerned:

\[\]

: label: eq-20

{C} _ {mathit {ij}}} ^ {e} = {int} = {int} _ {partial {omega} _ {Z} ^ {e}}frac {{rho} _ {0}} _ {0}}} {Z}} {Z}} {Z} {Z} {0}}} {Z}} {Z} {0}}} {Z} {0}}} {Z} {Z}} {0}} {Z}} {Z} {0}}} {Z} {N}}

3.2.4. The source vector#

The source vector \({\mathrm{S}}^{e}\) corresponds to the calculation of the last term of (), i.e.:

\[\]

: label: eq-21

{S} _ {i} ^ {e} = {int} = {int} _ {int} _ {int} _ {int} _ {n} _ {n}varphimathit {dS} =0

It admits as a general term:

(3.11)#\[ \begin{align}\begin{aligned} {S} _ {i} ^ {e} = {\ int} = {\ int} _ {\ partial {\ omega} _ {v} ^ {e}} {\ rho} _ {0} {V} _ {n} {n} {N} {N} _ {N} _ {n} {N} _ {n} {N}} {N}} {N} _ {N} {N}} {N}} {N} {N} _ {N} {N}} {N}} {N} {N}\\ {S} _ {i} ^ {e} = {\ int} = {\ int} _ {\ partial {\ omega} _ {v} ^ {e}} {\ rho} _ {0} {V} _ {n} {n} {N} {N} _ {N} _ {n} {N} _ {n} {N}} {N}} {N} _ {N} {N}} {N}} {N} {N} _ {N} {N}} {N}} {N} {N}\end{aligned}\end{align} \]